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1 Introduction and Contributions

In this mini-project, we focus on learning a meaningful graph representation from data, following
the framework outlined by Dong et al. [1], and then leveraging this learned graph for time-series
forecasting. The original article discusses different strategies for inferring graph topologies from
observed signals, highlighting a graph signal processing (GSP) perspective.

Our Data and Objectives. To test these models, we use COVID-19 weekly case counts from
multiple countries. Our goal is twofold:

• Learn a graph that best represents the relationships among different countries.

• Evaluate how graph-based models (AR+diffusion and SVAR) can improve time-series fore-
casting accuracy over simpler baselines.

Team Organization.

• Julien: Implementation and experiments with the AR+diffusion model, reading and summa-
rizing the article [1].

• Soël: Implementation of the SVAR model (adjacency matrix, polynomial expansions), exten-
sive hyperparameter tuning, and final result analysis.

Code Reuse. We reused standard optimization tools (scipy.optimize.minimize), matrix expo-
nentials (scipy.linalg.expm), and typical data scaling classes (MinMaxScaler, StandardScaler).
About 30% of our code is adapted from open-source scripts; 70% was developed specifically for
this project.

Extension Beyond the Article. We propose an additional AR+diffusion model, not explicitly
mentioned in the original article, to forecast time series on the nodes of a learned graph. We
further compare this approach with a Structural Vector Autoregression (SVAR) model, where
polynomial expansions of an adjacency matrix capture temporal dynamics.

2 Method

Our methodology combines graph learning with two distinct forecasting models, AR+diffusion
and SVAR, both leveraging the inferred graph structure.
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2.1 AR+Diffusion Model

We introduce an AR(p) [2] term combined with a diffusion term over the graph using the idea
from [3] but using the previous time step as the source of the diffusion kernel and adding an AR
model. The main idea is that the AR model is better at modeling the evolution of cases within a
country, whereas the diffusion model is better at modeling external effects linked to other coun-
tries:

Xi(t) =
p

∑
k=1

αk Xi(t − k) + β
[

exp(−τL)X(t − 1)
]

i,

X(t) ∈ RN , i = 1, . . . , N,

where exp(−τL) models how each node influences others through the learned graph L, a Lapla-
cian matrix. The parameters αk control the autoregressive contributions, β the diffusion strength,
and τ the intensity of the diffusion process. This model is flexible, allowing pure autoregressive
behavior when τ = 0 or pure diffusion with p = 0.

The training process minimizes a loss function defined as:

Loss =

√√√√ K

∑
t=p

∥X(t)− X̂(t)∥2 + λ∥L∥, (1)

where λ is the regularization coefficient, and ∥L∥ can represent either ℓ1 (sparsity) or ℓ2 (smooth-
ness) norms on the off-diagonal elements of L.

The optimization is performed using gradient-based methods such as L-BFGS-B from
scipy.optimize.

2.2 SVAR Model

The Structural Vector Autoregression (SVAR) model [4], [5] which incorporates a polynomial
expansion of the adjacency matrix A to capture temporal dynamics [6]. For a lag order M, the
model predicts xt as:

xt ≈
M

∑
m=1

(
m

∑
j=0

cm,j Aj

)
xt−m, (2)

where cm,j are polynomial coefficients. These coefficients, along with A, are learned by minimizing
the loss:

Loss =
1
2

K

∑
t=M+1

∥xt − x̂t∥2 + RegA(λ1) + Regc(λ2), (3)

with ℓ1 or ℓ2 regularization applied to A and c, λ1 and λ2 being the regularization coefficients on
A and c respectively.

The residual is computed by iteratively subtracting polynomial expansions from the observed
series xt, implementing the simplified algorithm described in [6]. Optimization is performed using
scipy.optimize.minimize with methods like L-BFGS-B or TNC for efficiency.

Both models were implemented to handle various graph structures and regularization settings,
providing insights into their trade-offs and practical applications. Forecasting performance (so
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called error in the following) was evaluated using the L2 norm between the predicted and true
vectors.

3 Data

COVID-19 Weekly Data. We downloaded country-level COVID-19 case counts from Our World
in Data (https://github.com/owid/covid-19-data). We selected 22 countries from different con-
tinents to ensure variety in epidemiological patterns. We then:

• Aggregated daily data to weekly to smooth out short-term oscillations.

• Imputed missing data with zeros.

Scaling and Splits. We used the MinMaxScaler to fit on the first 80% of the time steps (training
set). The last 20% of weeks formed the test set. Countries with large disparities in COVID-19
scales, such as the United States vs. smaller nations, motivated a robust scaling approach.

Data Diagnostics. The data exhibits a clear weekly periodicity across different countries, likely
due to variations in workdays and reporting practices. To mitigate this effect, we applied a
smoothing technique to aggregate data over weekly intervals. Additionally, further diagnostics
could involve identifying outliers or inconsistencies in reporting patterns, as these could bias the
results. 3

From a modeling perspective, we assume that the dynamics are primarily driven by the tempo-
ral evolution of cases within and between countries. However, these assumptions may overlook
structural biases in the data, such as underreporting or differences in testing rates. For instance,
countries with similar cultural or economic characteristics may conduct testing campaigns simul-
taneously, creating artificial correlations. Future data analysis could investigate these patterns
more deeply, incorporating supplementary datasets like mobility data or healthcare infrastructure
to validate or challenge these assumptions.

4 Results

4.1 AR+Diffusion Forecasting

We tested p ∈ {1, . . . , 5}, τ ∈ {0, 0.01, 0.1, 0.5, 1, 2, 5, 10}, and regularization levels λreg ∈
{0, 0.01, 0.1, 1, 10}.

The first conclusion is that the pure diffusion model (p = 0, error= 0.28) performs worse than the
pure autoregressive model (τ = 0, error= 0.24), highlighting that within-country dependencies
outweigh inter-country interactions. This observation motivated the inclusion of the AR term in
the combined model. However, even the best pure AR model (p = 3) was outperformed by the
combined AR+Diffusion model with parameters p = 3 and τ = 10−3, (error= 0.23). 4

Interestingly, the parameter τ does not significantly impact performance except when it is too
large (e.g., τ = 10), where the results degrade. This suggests that moderate levels of diffusion
effectively complement autoregressive dynamics without overwhelming them.

Finally, examining the learned graph reveals that the strongest connections are not necessarily tied
to geographical proximity. For instance, cultural dependencies were observed between England,
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Australia, and the United States. Conversely, Japan and Corea appeared relatively isolated, which
may reflect their strict border control policies during the COVID-19 pandemic. 1

Figure 1: AR + Diffusion model - graph

4.2 SVAR Forecasting

Similarly, for the SVAR approach, we performed a grid search over M ∈ {1, . . . , 5} and regular-
ization coefficients λ1, λ2 ∈ {0, 0.01, 0.1, 1, 10} for either L1 or L2.

The results indicate that the impact of M (lag order) stabilizes after M = 2, with a slight underper-
formance at M = 1. From M = 2 onward, the SVAR model consistently outperformed the t − 1
baseline (error= 0.26), pure diffusion, pure AR, and the AR+Diffusion model discussed earlier.
For M = 4, SVAR emerged as the best-performing model on this dataset (error= 0.22). 5

The learned graph is notably sparse, with stronger connections observed between specific coun-
tries. Interestingly, these connections are not always intuitive or geographically driven. For exam-
ple, a strong link between South Africa and Colombia may be explained by economic similarities,
as both are emerging markets with potentially comparable public health measures during the
pandemic. Additionally, strong links were observed between these countries and others in Africa,
such as Egypt, Morocco, and Nigeria, highlighting shared dynamics within the region. This spar-
sity and focus on key relationships underscore the SVAR model’s ability to capture meaningful
temporal and structural patterns. 2
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Figure 2: SVAR model - graph

4.3 Concluding Remarks

The best-performing model across all experiments was the SVAR model with M = 4, which con-
sistently outperformed other approaches, including pure AR, pure diffusion, and the combined
AR+Diffusion model. However, interpreting the learned graphs remains challenging, as the con-
nections are not always geographically intuitive. This may reflect factors such as cultural or eco-
nomic similarities, or synchronized public health measures, which lead to similar patterns in the
time series data.

There are notable limitations to our approach. First, the nodes in our models represent coun-
tries, which may not fully capture the dynamics of epidemic diffusion at the individual level. A
more granular representation with individuals as nodes would provide a better understanding
of within-population diffusion processes. Second, the reliability of reported COVID-19 case data
varies across countries, potentially introducing biases. Factors such as underreporting, differences
in testing strategies, and synchronous testing campaigns in culturally aligned countries can influ-
ence the observed data.

For the SVAR model specifically, the reliance on a single adjacency matrix may oversimplify the
temporal evolution of relationships. Future work could explore dynamic graphs that evolve over
time or incorporate additional contextual data (e.g., mobility or vaccination rates) to refine the
model’s predictions. Additionally, extending the methodology to individual-level data could pro-
vide a more nuanced understanding of epidemic spread and improve the applicability of these
models in public health scenarios.
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A Annex

Figure 3: Covid cases for somes countries during time
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Figure 4: Error for different p and tau AR + diffusion model

Figure 5: Error for different M - SVAR model
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