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Abstract

The rapid adoption of Large Language Models (LLMs) and multimodal generative
systems has raised growing concerns about their computational and environmental
costs. This internship was focused on characterizing and optimizing the latency and
energy consumption of generative AI models, combining theoretical analysis with
fine-grained empirical measurements on state-of-the-art GPUs.

We first examined micro-interactions with LLMs, using politeness as a
controlled case study to quantify the energy cost of seemingly trivial prompts such
as “thank you.” We then investigated system-level design choices, showing
how numerical precision, batch size, and request scheduling can yield orders-of-
magnitude differences in per-request energy use, often overshadowing architectural
factors. Finally, we extended the analysis to text-to-video diffusion models,
developing a compute-bound theoretical model and validating it across multiple open-
source systems, highlighting quadratic scaling in spatial and temporal dimensions
as a critical bottleneck for sustainability.

Together, these studies provide a multi-level perspective - spanning user interac-
tions, serving infrastructure, and generative architectures - on where inefficiencies
arise in inference pipelines and how they can be mitigated. Beyond their scientific
contributions, these results have been integrated into Hugging Face’s open-source
ecosystem, promoting reproducibility and paving the way for more energy-aware
deployment practices in the community.
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1 Introduction
Large Language Models (LLMs) and multimodal generative systems have become central
to modern AI applications, powering search engines, conversational agents, code assistants,
and creative tools. Their capabilities have advanced rapidly, but so have the computational
demands required to deploy them at scale. Inference - executed billions of times daily
across datacenters and user devices - is now widely recognized as the dominant source
of both latency bottlenecks and energy consumption. Understanding and mitigating
these costs is essential, not only for efficient service delivery but also for the long-term
sustainability of AI.

This internship at Hugging Face focused on developing a fine-grained understanding
of latency and energy behavior in generative models. The goal was twofold: (i) to
design analytical models capturing the relationship between input/output parameters,
architectural choices, and hardware characteristics, and (ii) to validate these models
through systematic measurement campaigns on state-of-the-art GPUs. This dual approach
provides actionable insights for practitioners deploying generative models in production
while contributing to the broader scientific effort of quantifying the environmental footprint
of AI.

The work is organized around three complementary case studies:

• Micro-interactions with LLMs. Using politeness as a motivating example,
we quantify the energy cost of seemingly innocuous prompts such as “thank you,”
highlighting how prompt length, output verbosity, and model size affect the footprint
of everyday interactions with LLMs.

• System-level design choices. We analyze how numerical precision, batch size, and
request scheduling impact inference efficiency, showing that deployment strategies
can induce orders-of-magnitude variations in per-request energy use.

• Generative video models. We develop a compute-bound theoretical model of
text-to-video diffusion systems, validate it on the WAN2.1 model, and extend it to
a benchmark of six popular open-source models, exposing video generation as an
extreme case of inference inefficiency.

Together, these studies form a coherent body of work that bridges theoretical modeling
with empirical validation. They shed light on where and why inefficiencies arise in
generative inference pipelines, and propose practical strategies - from prompt design to
serving infrastructure - to mitigate their environmental impact. Additional resources,
including source code and datasets used in this work, are available at:

• github.com/JulienDelavande/benchlab

• huggingface.co/jdelavande.
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2 Related Work
Research on the environmental impact of machine learning has expanded rapidly over
the past five years. The pioneering study of Strubell et al. [1] first quantified the carbon
footprint of training a Transformer model, sparking a wave of work on the costs of
ML training across tasks and hardware platforms [2, 3, 4, 5, 6]. While model training
initially received the most attention due to its large up-front costs, inference is increasingly
recognized as the dominant contributor to the environmental footprint of deployed AI
systems [7, 8, 9]. This has motivated a shift towards fine-grained studies of inference
efficiency and its determinant factors.

Energy cost of LLM inference. Inference with LLMs has been studied from multiple
perspectives: energy per query [10], hardware comparisons between CPUs and GPUs [11],
and workload characteristics such as prompt length and verbosity [12, 13, 14, 15]. A
growing body of work highlights the discrepancy between theoretical FLOPs or utilization
estimates and actual measured energy consumption [16], underlining the need for empirical
benchmarks. More broadly, efficiency has been advocated as a core research metric [17],
with calls for standardized reporting [18, 9], improved cost indicators [19], and system-level
carbon accounting [5]. Despite this, few studies have focused on micro-interactions or the
impact of factors such as output length and precision, which may appear negligible but
compound significantly at scale.

System-level optimizations. Inference efficiency is shaped not only by model ar-
chitecture but also by deployment choices. Quantization methods - ranging from FP16
and BF16 to INT8 and INT4 - reduce memory and compute costs through techniques
such as activation-aware weight quantization [20], GPTQ [21], and FP8 formats [22].
While these methods can reduce latency and energy in compute-bound regimes, their
benefits often diminish under memory-bound conditions due to dequantization overheads
and bandwidth limits [23]. Batching is another key lever: it amortizes kernel overheads
but can suffer from padding inefficiencies in prefill or irregular sequence lengths [8, 24].
Modern inference engines such as Hugging Face’s Text Generation Inference (TGI) [25]
and vLLM [26] implement continuous batching [27], kernel fusion [28, 29], and paged
attention to maximize GPU utilization. Scheduling strategies like query routing [30] and
speculative decoding [31] further improve throughput, though their impact on energy
remains underexplored [32]. These works highlight that infrastructure and workload
shaping are as important as model internals in determining sustainability.

Generative video models. Compared to text or image generation, video generation is
particularly energy-intensive due to the quadratic growth of transformer-based attention
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with spatial and temporal dimensions. Luccioni et al. [9] reported large disparities in
energy costs across tasks, with image generation far exceeding text. Li et al. [33] quantified
the energy use of Open-Sora [34], showing that iterative denoising dominates and that
energy requirements scale near-quadratically with resolution. However, published studies
of text-to-video models remain scarce, and most focus on single systems with narrow
configurations. This leaves open a need for systematic analysis across models and scales.

Measurement frameworks. Reliable measurement tools are essential for this line of
research. Frameworks such as CodeCarbon [35], pyRAPL [36], and NVIDIA’s NVML API
provide the basis for tracking GPU, CPU, and RAM energy usage. These tools enable
fine-grained decomposition of inference into phases (prefill vs. decode) and components,
supporting reproducible comparisons across models and settings.

Summary. In summary, prior work has laid the foundations for understanding the energy
footprint of AI systems, but important gaps remain. While prompt design, quantization,
batching, and scheduling have each been studied in isolation, few analyses integrate these
perspectives into a unified empirical and theoretical framework. Video generation, in
particular, remains underexplored despite its extreme computational costs. This motivates
our internship work, which aims to bridge user-level, system-level, and architectural
perspectives on inference efficiency.
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3 Case study I: Saying Thank You to a LLM Isn’t
Free: Measuring the Energy Cost of Politeness

Politeness is a crucial part of human communication, and users often carry this behavior
into their interactions with AI systems. However, in the context of large language models
(LLMs), even a simple message such as “thank you” triggers a full inference pass, activating
billions of parameters and consuming non-negligible amounts of energy. While trivial
in isolation, such micro-interactions occur at massive scale and may accumulate into a
substantial environmental footprint.

In this study, we use politeness as a controlled and reproducible proxy to explore
the energy cost of micro-interactions with LLMs. We quantify how input length, output
verbosity, and model size influence energy consumption, and decompose usage across
prefill and decode phases. This analysis provides insights into the hidden costs of everyday
conversational exchanges and illustrates broader trade-offs between efficiency, usability,
and sustainability in human–LLM interaction.

3.1 Methodology

3.1.1 Dataset and Experimental Setup

To evaluate the energy cost of polite interactions, we constructed a dataset of 10,000
chat-based conversations ending with a “thank you” message from the user. These were
derived from the ultrachat_200k [37] dataset and reformatted to match the instruction-
following prompt template expected by Instruct models, simulating real-world assistant
usage scenarios. Each prompt submitted to the model included the entire conversation
history up to that point, ensuring a realistic multi-turn context. The resulting dataset is
available at: ultrachat_10k_thank_you.

For every unique prompt, we performed 5 warmup runs to stabilize performance and
cache behavior, followed by 10 measurement runs for each generation phase. Specifically,
we conducted 10 prefill-only generations (constrained to a single output token) and 10
full generations (up to 256 output tokens). This allowed us to separately estimate the
energy consumption of the prefill and decode phases, by subtracting the average prefill
energy from the full generation energy. We also logged input/output lengths, latency, and
energy consumption by hardware component for each run.

3.1.2 Hardware and Software Environment

All experiments were run on a dedicated inference server equipped with an NVIDIA H100
SXM GPU (80GB) and 8 AMD EPYC 7R13 CPU cores, with no co-scheduled jobs.

Energy was measured using:
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• GPU: NVIDIA Management Library (NVML),

• CPU: pyRAPL (Intel RAPL counters),

• RAM: CodeCarbon’s model-based estimation1.

3.1.3 Models and Precision

Our core analysis focused on the LLaMA 3.1–8B-Instruct model in float32, run via
the standard Transformers library [38]. In this setting, generation used batch size 1.
We chose LLaMA 3.1–8B-Instruct for its strong relevance: as of the time of testing
(July 2025), it is the 2nd most liked and 3rd most downloaded model on the Hugging
Face Hub (after DeepSeek R1–680B, GPT-2, and Qwen2–7B), making it a representative
and impactful open-source choice.

We then extended our tests to a range of open-source instruction-tuned LLMs, includ-
ing:

• Qwen 2.5 family: 0.5B, 1.5B, 3B, 7B, and 14B,

• Mistral-7B-Instruct-v0.3.

3.2 The Energy Cost of a Simple “Thank You”

We measured the energy required to generate a reply to a polite “thank you” message
using the LLaMA 3.1–8B-Instruct FP32 model, deployed on a single NVIDIA H100
GPU. Across 10,000 such interactions, we observed a mean total energy consumption of:

• 0.202 ± 0.096 Wh on the GPU,

• 0.024 ± 0.014 Wh on the CPU,

• 0.019 ± 0.010 Wh from RAM.

The total energy per polite interaction thus averages 0.245 Wh, which is equivalent
to powering a representative 5W LED bulb for nearly 3 minutes 2.

GPU usage dominates the total energy profile, with a contribution nearly an
order of magnitude larger than the CPU or RAM. The GPU also exhibits higher variance,
reflecting its sensitivity to sequence length and runtime context. Figure 1 shows the
distribution of GPU energy per generation, which is right-skewed with a long tail -
indicating that some completions are disproportionately costly, especially when the model
produces longer or more verbose replies. This variability is primarily driven by differences

1https://mlco2.github.io/codecarbon/methodology.html#ram
2The “±” symbol denotes the variance in energy usage across generations in the dataset
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Figure 1: Distribution of GPU energy consumption across “thank you” generations. The
long tail indicates variability due to prompt and output length.

in prompt and output length. While “thank you” is always the last user message, the
surrounding conversation history and the model’s verbosity can significantly influence
token count - and thus, energy consumption.

3.3 Component-wise Energy Consumption

To better understand where energy is spent during LLM inference, we break down the
generation process into two main phases: prefill, which encodes the entire prompt and
generates the first token, and decode, which generates the remaining tokens one by one
using the cached context.

(a) Energy consumption by hardware type
(GPU, CPU, RAM) and phase (prefill, decode,
generate). The GPU consistently dominates
across all phases, while CPU and RAM contri-
butions remain minor.

(b) Histogram of GPU energy consumption for
prefill and decode phases. Decode contributes
most to the long tail due to repeated sequential
steps, whereas prefill energy is substantial but
occurs only once per request.

Figure 2: Breakdown of energy consumption by hardware and phase (left) and distribution
of GPU usage in prefill vs. decode (right).

As shown in Figure 2a, the GPU is by far the primary consumer of energy
throughout all of the stages of the inference process. In contrast, CPU and RAM usage
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contribute only marginally to the total energy budget.
When analyzing the inference process, the prefill phase incurs the highest computational

cost relative to the number of output tokens generated. We believe that this is because
the model processes the entire input sequence and computes key/value caches for all
input tokens before generating the first token. While computationally expensive, this step
remains highly parallelizable on the GPU, which helps mitigate its efficiency.

The decode phase is inherently autoregressive and therefore less parallelizable: each
new token depends on the previous one and reuses the cached context without recomputing
the entire key/value cache. As a result, each decode step is lighter in isolation but must
be repeated sequentially for each token generated. This sequential nature keeps the GPU
occupied for a longer time, leading to higher total energy for the decode step, especially for
longer output lengths. Figure 2b highlights this: while prefill consumes a significant chunk
of energy up front, the long tail of high energy usage comes mainly from the repeated
decode operations that accumulate over long outputs.

3.4 Energy and Latency Dependence on Input and Output
Length

3.4.1 Theoretical Latency Model

To better understand how input and output lengths influence energy consumption, we
adopt a closed-form latency model based on the dominant operations during LLM inference.
Each GPU kernel is modeled as either compute-bound or memory-bound, depending on
its floating-point operation count Fo and data transfer volume Do, relative to hardware
ceilings: floating-point throughput Fmax and memory bandwidth Bmax. The theorical
effective latency of an operation is:

to = max
(

Fo

Fmax
,

Do

Bmax

)
,

The total latency is the sum over all operations:

T =
∑

o

to.

An operation is compute-bound when its execution time is limited by arithmetic
throughput, and memory-bound when data movement dominates. On modern GPUs,
compute and memory operations can often proceed asynchronously, competing for shared
resources like streaming multiprocessors (SMs) or memory buses. Our model conservatively
assumes no overlap, thus upper-bounding the true latency.

We neglect kernel launch overhead, although it can become significant when GPU
kernels execute faster than the CPU can dispatch them - especially in regimes with short
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or tightly chained kernels (e.g., decode or layernorm blocks), where inter-kernel gaps due
to CPU scheduling latency inflate total latency. Additionally, actual data transfer speeds
can vary depending on caching effects - for instance, if intermediate activations are reused
and remain in L2 or shared memory, memory-bound operations may be accelerated.

To account for these approximations, we introduce empirical efficiency factors for
compute and memory:

Feff = µcomp · Fmax, Beff = µmem · Bmax,

where µcomp and µmem absorb multiple sources of inefficiency. These include suboptimal
GPU occupancy, memory misalignment penalties, limited overlap between data fetch and
compute, and variable cache residency for activations.

The values of µcomp = 0.675 and µmem = 0.443 used throughout this section were
calibrated empirically using profiling data from LLaMA 3.1–8B (FP32) inference on an
NVIDIA H100 SXM GPU.

Prefill phase. This phase processes the prompt of length s through N = 32 transformer
blocks. The dominant operations are compute bound for input sequence greater than 100
(batch = 1) and include QKV projections, feed-forward layers and FlashAttention. Using
the theoretical model described above, we approximate the latency of the prefill phase
with the following fitted expression:

tprefill(s) ≈ αs + βs2 + γ,

α ≈ 3.18 × 10−4 s/token, β ≈ 1.17 × 10−8 s/token2.

γ ≈ 1.68 × 10−2 s

Figure 3: Theoritical latency breadown per operation accoss prompt length regimes for
the Prefill phase.

In practice, latency is constant for very short prompts (s ≲ 60 - the regime is memory
bound), linear across most real-world prompts (s < 4,000), and quadratic only for extreme
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lengths (s > 30,000) (Fig 3).

Decode phase. This phase generates g tokens autoregressively, attending to a growing
context ℓ = s + t − 1. All operations remain memory-bound for batch equals 1. Total
latency scales as:

tdecode(s, g) ≈ ηg + θsg + ϕg2 + ρ,

η ≈ 2.61 × 10−2 s/token, θ ≈ 3.31 × 10−7 s/token2.

ϕ ≈ 5.86 × 10−8 s/token2, ρ ≈ −5.32 × 10−2 s.

Figure 4: Theoritical latency breadown per operation accoss prompt length regimes for
the Decode phase.

Quadratic effects in g exist theoretically but appear only for g ≳ 105, beyond practical
usage (Fig 4).

3.5 Link to Empirical Energy Trends

The latency trends outlined above align closely with our energy measurements. On the
H100 GPU, we can record the average power during each phase - 684 W during prefill
(for average s) and 293 W during decode (for average s and batch size of 1). As a result,
energy consumption becomes approximately proportional to runtime, with an effective
power P̄eff that remains nearly constant within each phase. This proportionality justifies
the direct mapping between theoretical latency and empirical energy trends.

Figure 5 illustrates the observed relationship: energy in the prefill phase scales linearly
with input length, while decode energy grows primarily with output length.

Prefill energy. Energy in the prefill phase increases linearly with the number of input
tokens:

Eprefill(s) ≈ A · s + B,
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Figure 5: Correlation between token lengths and GPU energy consumption in prefill and
decode phases.

with fitted values:

A ≈ 6.05 × 10−5 Wh/token, B ≈ 5.00 × 10−3 Wh.

This is consistent with the compute-bound regime described in the latency model.

Decode energy. For generation lengths g << 105, decode energy follows the linear
regime predicted by:

Edecode(s, g) ≈ Cg + Dsg + E

with fitted values:

C ≈ 2.13 × 10−3 Wh/token D ≈ 2.87 × 10−7 Wh/token2.

E ≈ −4.71 × 10−3 Wh

This reflects the cumulative cost of attending to a growing context at each step. The weak
dependence on s corresponds to the repeated attention over the prompt tokens during
generation.

No quadratic growth. While the theoretical model includes a quadratic term in g,
this component remains negligible in practice given that our dataset does not include
sequences long enough (g ≳ 105) to observe this behavior.
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Kernel effects. Discrete jumps and non-linearities in the measured energy arise from
low-level kernel effects such as block alignment and tiling. These artifacts do not contradict
the overall linear trends and are typical of GPU workloads (see bottom right subplot on
Figure 5).

Summary. Energy during inference scales linearly with prompt and generation lengths,
matching the theoretical latency model under stable power conditions. The decode phase
shows a bilinear dependency, with output length as the dominant factor and a minor
prompt-length contribution.

3.6 Impact of Model Size on Energy Consumption

To assess how model scale influences energy usage, we extended our analysis beyond
LLaMA 3–8B to include models from the Qwen 2.5 family (ranging from 0.5B to
14B parameters) and Mistral–7B. Since Qwen models share the same architecture and
tokenizer, this allowed for a controlled comparison focused solely on model size.

Figure 6: GPU energy consumption during generation as a function of model size. Boxes
represent the distribution across 10,000 replies including polite “thank you” phrases.

We observed that larger models have the tendency to produce longer outputs
on average (Figure 7a). This reflects their greater capacity to elaborate responses, but
also contributes to increased compute and energy during inference [39].

As shown in Figure 6, energy usage scales with model size – while smaller models are
more energy-efficient, larger models incur significantly higher costs to generate responses
of similar or slightly longer lengths.

To isolate the effects of model size and verbosity, we analyzed decode-phase energy as a
function of both parameters. Figure 7b shows that model size is the dominant factor,
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(a) Mean and standard deviation of output
token lengths across models. Larger models
tend to generate longer responses on average.

(b) Interpolated contour plot of GPU energy
consumption (Wh) during the decode phase, as
a function of model size (log scale) and output
length.

Figure 7: (Left) Output length increases with model size; (Right) decode energy depends
on both output length and model size.

with energy increasing steeply along the model axis. Output length has a secondary
influence but remains within a narrower energy band.

Link to theoretical latency analysis. The observed increase in energy with model
size can be directly explained by the architectural scaling effects. Specifically:

• The number of transformer blocks N grows with model size and contributes linearly
to the total latency in both prefill and decode phases.

• In the prefill phase, dominant operations such as QKV projection and feedfor-
ward layers involve matrix multiplications with complexity O(sNh2), leading to a
quadratic dependence on the hidden dimension h.

• In the decode phase, energy scales as O(gNh2) in the memory-bound regime

Together, these explain why energy increases steeply with model size: larger models
have deeper networks (N), wider layers (h), and tend to generate longer outputs (g). This
is reflected in the contour plot of Figure 7b, where energy increases most rapidly along
the model-size axis.

In summary, scaling up model size increases energy use significantly - not only due
to longer replies, but also due to larger hidden dimensions and more layers. These results
emphasize the importance of considering model size–efficiency trade-offs, even in seemingly
trivial interactions such as replying to a “thank you”. Although larger models consume
more energy, their outputs may exhibit higher helpfulness, informativeness, or linguistic
fluency [40] - aspects which we do not evaluate in this study.
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3.7 Conclusion and Takeaways

We used the “thank you” prompt as a reproducible micro-interaction to study the energy
profile of LLM inference. This seemingly trivial interaction exposes clear structural trends
in energy usage - and reflects broader trade-offs in sustainable AI deployment.

• Input/output length matters. Energy grows linearly with prompt and generation
length. Decode dominates for long outputs due to its sequential nature.

• Model size matters. Larger models produce longer replies and incur steeper
energy costs - both due to deeper architectures and longer inference runtimes.

• Phase distinction is key. Prefill is compute-bound and benefits from hardware
parallelism; decode is memory-bound and more sensitive to sequential overhead.

• Latency models are useful. Our closed-form model aligns with empirical trends,
and offers a foundation for predicting inference energy at scale.

In short: Politeness isn’t free - but understanding its cost helps build more efficient
and sustainable LLM deployments. By quantifying where energy is spent, we can begin
to optimize not just model performance, but also its environmental footprint.
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4 Case study II: Understanding Efficiency: Quan-
tization, Batching, and Arrival Shaping in LLM
Energy Use

Beyond model architecture, system-level design choices strongly influence the efficiency
of large language model (LLM) inference. Numerical precision, batching strategy, and
request scheduling can all reshape the balance between compute- and memory-bound
workloads, leading to significant variations in both latency and energy use.

In this study, we systematically evaluate how these deployment factors affect inference
efficiency on NVIDIA H100 GPUs. By analyzing quantization formats, batch sizes, and
traffic patterns under realistic LLM serving conditions, we show that energy consumption
per request can vary by up to two orders of magnitude. This highlights the importance
of infrastructure and scheduling - not just model internals - for building sustainable and
scalable LLM services. Our contributions are a detailed study of quantization across
five precisions, an analysis of batch size effects including energy per token and padding
trade-offs, a benchmark of Hugging Face’s Text Generation Inference (TGI) server showing
that traffic shaping can reduce per-request energy by up to 100×, and practical guidelines
for energy-efficient LLM inference.

4.1 Experimental Setup

We benchmarked a selection of some of the most downloaded instruction-tuned open-source
LLMs on Hugging Face as of July 2025, focusing on standard model sizes in the range of
a few billion parameters. Our benchmark includes:

• Qwen 2.5: 0.5B, 1.5B, 3B, 7B, 14B

• Mistral-7B-Instruct-v0.3

• LLaMA 3.1–8B-Instruct

Each model was evaluated under five numerical formats:

• float32, bfloat16, float16 (native support via PyTorch)

• int8, int4 using bitsandbytes [41] quantization (via the LLM.int8() and LLM.int4()
formats).

For int8 and int4, we applied post-training quantization using bitsandbytes, which
compresses the feed-forward and attention projection weights using vector-wise quantiza-
tion. For int8, LLM.int8 performs 8-bit matrix multiplications with outlier-aware mixed
precision, isolating rows or columns with large activation features and computing them in
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16-bit to preserve accuracy [42]. For int4, weights are packed two per byte and stored in
a NormalFloat4 (NF4) format; custom CUDA kernels perform on-the-fly dequantization
before matmuls [43].

All models were loaded and executed using the Transformers library [38].
All runs were conducted on a dedicated NVIDIA H100 SXM GPU (80GB) and 8 AMD

EPYC 7R13 CPU cores, with no co-scheduled jobs. GPU and CPU energy were measured
using the CodeCarbon library [35], which leverages NVML and pyRAPL for real-time
energy monitoring, while RAM energy was estimated via a CodeCarbon heuristic 3 based
on CPU count and usage duration. Latency was recorded at the CUDA kernel level.

Each request was preceded by a warmup phase of 5 iterations to stabilize memory
and kernel behavior. For each configuration, we repeated the same request 10 times and
report the average energy and latency to reduce variability.

We reused the “thank you” prompt subset from our previous work (Section 3) which
studies the energy impact of polite interactions with LLMs. This dataset provides
a controlled and reproducible input distribution while preserving real-world relevance.
Specifically, we used 10,000 polite prompts (ending in “thank you”) sampled from a custom
subset of the UltraChat-200k dataset [37], available at ultrachat 10k. Prompts ranged
from 200 to 4000 tokens, and outputs were relatively short - typically between 10 and
300 tokens - due to the nature of the dataset. Prompts were adapted to match the input
format expected by each model.

To analyze energy and latency independently for prefill and decode, we split the
inference into two steps:

• Prefill: Forward pass over the full prompt (with generation stopped at the first
token).

• Decode: Autoregressive generation of the remaining tokens, attending to cached
context.

The full generate phase corresponds to the sum of prefill and decode. In practice, we
isolate prefill by generating a single token, and obtain decode as the difference between the
full generation and the prefill run. This decomposition enables us to capture the distinct
compute regimes that characterize each phase:

The prefill phase is not uniformly compute-bound: for very small input sizes, most
operations are memory-bound due to limited arithmetic intensity. (Memory-bound
operations are limited by data movement rather than computation; although memory and
compute can be executed asynchronously on GPUs, one often becomes the bottleneck,
depending on the workload.) As the input length (s) increases, compute-heavy operations
- such as feedforward layers and QKV (query, key, and value) projections - begin to

3https://mlco2.github.io/codecarbon/methodology.html#ram
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dominate, especially in large models with wider hidden dimensions. Compute-bound
operations, by contrast, are limited by the rate at which arithmetic can be performed. The
transition point from memory-bound to compute-bound depends primarily on the model’s
hidden size, with larger models entering the compute-bound regime earlier. Increasing
the batch size also accelerates this transition by increasing the FLOP-to-memory ratio.

In contrast, the decode phase remains fully memory-bound for smaller batch sizes,
regardless of model size. This is due to the autoregressive nature of generation: each
token is produced sequentially and involves computing attention over cached prompt
representations at each decoding step, leading to small, fragmented memory operations.
Only by increasing the batch size does the decode phase start to exhibit compute-bound
characteristics.

Idle time. Finally, GPU utilization can be impacted by idle times between kernels.
When the CPU thread issuing kernels is slower than the GPU execution, the GPU may
stall despite its asynchronous capabilities - leading to gaps where no work is scheduled.
This underutilization becomes more pronounced in workloads with small or irregular
kernel launches.

4.2 Impact of Numerical Precision on Latency and Energy Con-
sumption

As LLMs grow in size, the adoption of lower-precision numerical formats - such as
bfloat16, int8, or int4-has become a widespread strategy to reduce memory footprint
and enable inference for larger models on constrained hardware. While these formats
can also improve throughput and hardware utilization, their actual benefits are often
phase-dependent and not always straightforward. In this section, we dissect how numerical
precision impacts both latency and energy consumption across the two main phases of
inference: prefill and decode. We show that precision reduction yields significant gains
primarily in compute-bound regimes, whereas in memory-bound settings, aggressive
quantization may introduce dequantization overheads or bandwidth saturation that offset
the expected improvements.

4.2.1 Prefill Phase: Acceleration without Proportional Energy Savings

In the prefill phase, we observe up to 4× reduction in GPU energy when switching from
float32 to lower-precision formats such as float16, bfloat16, or int8 - particularly
for larger models (e.g., LLaMA 8B or Qwen 14B) - see Figure 8a. These models are
predominantly compute-bound at the input lengths seen in our dataset (typically smean ≈
1200), and benefit fully from the activation of Tensor Cores, which enable fused matrix
multiplications with up to 15× higher throughput.
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(a) Mean GPU energy consumption by model
and dtype during the prefill phase.

(b) Mean GPU energy consumption per token
by model and dtype during the decode phase.

Figure 8: Impact of model size and numerical precision (dtype) on GPU energy consump-
tion during (a) prefill and (b) decode phases.

Smaller models, in contrast (e.g., Qwen-0.5B and 1.5B), remain memory-bound across
most of the prompt lengths we tested, as their hidden sizes are smaller and their com-
pute intensity lower. As a result, they gain little to no advantage from Tensor Core
acceleration. In some cases, we even observe a slight increase in energy consumption for
float16/bfloat16, likely due to the activation of specialized compute kernels (Tensor
Core paths) that add overhead without enough work to amortize it (Figure 8a).

For quantized models (int8 and int4), performance is further impacted by on-the-
fly dequantization: during inference, weights stored in compressed integer formats are
unpacked and converted to higher-precision tensors (typically float16/bfloat16 or
float32) before computation. This unpacking adds extra kernel launches and memory
movement, which can partially negate the benefits of quantization, especially when the
operations are memory-bound or irregular.

While latency does decrease significantly in many of these configurations - up to 10×
in large models (Figure 16) - the energy savings are smaller. This is due to a higher
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average power consumption when using Tensor Cores: they complete the computation
faster, but at a higher instantaneous power draw. As a result, the time is shorter but the
power is higher, limiting the total energy saved.

4.2.2 Decode Phase: Quantization Pitfalls in Memory-Bound Regimes

In contrast to prefill, the decode phase is fully memory-bound for all model sizes and
sequence lengths considered. Each generated token reuses cached activations (KV caching)
and performs attention over the accumulated context, with little opportunity for parallel
compute acceleration.

As a result, energy per generated token remains largely invariant across float32, float16,
and bfloat16, with minor improvements (or slight degradations) in both energy (Figure 8b)
and latency (Figure 17). This suggests that lower-precision Tensor Cores do not provide
significant benefits in this memory-bound regime. Theoretically, in a bandwidth-limited
regime, - and thus latency and energy per token - should scale inversely with the memory
word size bw: reducing from float32 (32 bits) to float16 (16 bits) or int8 (8 bits) should
yield ideal 2× or 4× gains, respectively. However, such improvements are not observed in
practice.

The reason lies in the energy profile of memory-bound workloads: while kernels may
run slightly faster with lower precision, the GPU spends a disproportionate amount of time
idle between kernel launches, waiting for synchronization, scheduling, or small fragmented
memory operations. Since GPU idle power remains non-negligible - typically around 120
W even when no kernel is running - reducing kernel duration has little effect on total
energy per token. The energy saved from faster compute is offset by the energy burned
during idle time.

Quantized formats like int8 and int4 further exacerbate this issue: they introduce
additional dequantization kernels that are small, memory-bound, and irregular, increasing
the number of launches and stream fragmentation. As a result, we observe higher
energy consumption with int8-often 2–3× more than float32-despite moving fewer bytes
(Figure 8b).

Modern GPUs also transfer memory in fixed-width chunks (e.g., 32–64 bytes), so
4-bit formats do not reduce memory bandwidth proportionally. Combined with memory
misalignment and suboptimal coalescing, this results in negligible or even negative energy
gains from quantization in the decode phase. In fact, we find that int4 performs
similarly to float32, reinforcing the notion that in memory-bound phases with high kernel
fragmentation, reducing numerical precision is insufficient to meaningfully reduce energy
use.

In summary: numerical precision reduction yields the most benefit in the prefill phase of
large models, where compute dominates. In contrast, the decode phase remains memory-
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limited, and aggressive quantization (e.g., int8 or int4) may incur overheads that outweigh
theoretical savings.

4.3 Batch Size Effects on Energy Efficiency

Batching is one of the most effective levers for improving throughput and reducing per-
request overhead in LLM inference. By processing multiple sequences in parallel, batching
amortizes fixed costs such as memory transfers and kernel launch overheads. However,
its impact on energy consumption depends on the inference phase (prefill vs decode),
the compute regime (compute- vs memory-bound), and the presence of padding. In
this section, we analyze how GPU energy scales with batch size for LLaMA 3.1–8B
(float32), using the transformers library in static batching mode. We separate the
analysis into two perspectives:

• Energy per input token, distinguishing between effective (excluding padding) and
computed (including padding) tokens;

• Energy per output token, where effective = computed since completed sequences are
dropped automatically.

Input token normalization: trade-offs between padding and parallelism. To
understand how batch size affects different phases of inference, we first normalize energy
by the number of input tokens.

On the left of Figure 9a, the energy per effective input token in the prefill phase
increases steadily with batch size due to padding. As sequences are padded to match
the longest one, the compute-bound prefill phase performs extra work on padded tokens,
leading to inflated energy per useful token.

In the decode phase, we observe a U-shaped curve: batching improves memory reuse
and reduces launch overheads, but larger batches increase the number of prompt tokens
per sequence, which in turn increases the cost of each attention step. The optimal batch
size for decode is reached at b = 4 in our setup. This U-shape carries over to the total
generate phase, which sees minimal energy per effective input token at b = 2, a compromise
between prefill waste and decode gains. At b = 16, energy per token increases by nearly
25% compared to this optimal point.

When energy is normalized by computed input tokens (right of Figure 9a), a different
picture emerges. Prefill energy per token remains constant, as expected for a compute-
bound workload where energy scales linearly with FLOPs. Decode energy per computed
token decreases with batch size, but the gains plateau around b = 4 as the marginal benefits
of parallelizing attention computations diminish for the sequence lengths considered. The
generate phase follows the same trend, reaching about 65% of the energy per token
observed at b = 1.
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(a) GPU energy per input token. Left: Effective tokens
(excluding padding); Right: Computed tokens (including
padding).

(b) GPU energy per output
token (effective = computed).

Figure 9: GPU energy consumption per token on LLaMA 3.1–8B. (a) Input-side energy
depends on token type and padding; (b) Output-side energy remains consistent across
requests.

Output token normalization: efficient batching across all phases. In Figure 9b,
we normalize energy by the number of output tokens. Here, all tokens are effective
because transformers automatically drop completed sequences from the batch, avoiding
padding overheads.

We observe consistent improvements across all phases. Energy per output token
decreases rapidly with batch size and follows a roughly logarithmic trend. The memory-
bound decode phase benefits the most: matrix multiplications over cached keys and values
dominate its cost, and batching enables better amortization of memory transfers. Prefill,
though compute-bound, also appears more efficient in this metric, since its fixed cost is
shared across a larger number of generated tokens. Lastly, full generation shows the same
trend, confirming that larger batches lead to longer kernels and reduced idle times, further
improving energy efficiency.

Conclusion. Batching improves energy efficiency across all inference phases, but through
different mechanisms. In the prefill phase, gains are limited by padding, which inflates
compute without contributing useful work. In the decode phase, batching brings strong
benefits up to b = 4, after which parallelism yields diminishing returns. Normalizing by
output tokens confirms consistent efficiency gains due to reduced overheads and longer,
better-amortized kernels. Overall, optimal batch size depends on the chosen normalization
and reflects a trade-off between parallelism and padding waste.

4.4 Energy Efficiency with TGI and Arrival Shaping

To simulate production-like deployment scenarios, we ran LLaMA 3.1–8B and 70B in
bfloat16 using Hugging Face’s text-generation-inference (TGI) server (v3.3.4). TGI
enables continous batching and integrates multiple inference optimizations such as more
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kernel fusion. This section investigates how usage patterns and in particular, request
arrival timing affect - batching quality and energy efficiency.

4.4.1 Methodology

We evaluated the per-request energy consumption under different inter-arrival patterns:

• Random delays: each request i is sent at ti = i · ∆, with ∆ ∼ U(0, 1) seconds.

• Fixed intervals: regular delays between requests (e.g., every 50ms, 300ms, or
500ms).

In both cases, we sent 10,000 generation requests to the TGI server. Energy consump-
tion was tracked via nvml on the GPU host, and averaged over all requests.

4.4.2 LLaMA 8B: Arrival Shaping Unlocks Large Gains

(a) LLaMA 8B: mean en-
ergy per request (GPU, CPU,
RAM) under random arrival.

(b) LLaMA 70B: same setup
as in (a), scaled up to larger
model size.

(c) LLaMA 8B: energy per re-
quest under fixed vs. random
inter-arrival delays.

Figure 10: Impact of inter-arrival delay and model size on energy per request. (a) and
(b): Mean energy for LLaMA 8B and 70B under random delays. (c): Comparison of fixed
vs. random delays at 8B scale.

For LLaMA 3.1–8B, switching from the standard transformers library (with sequential
request handling) to Hugging Face’s text-generation-inference (TGI) server (with
burst-mode batching) reduces the mean energy per request from 1.2 × 10−1 Wh to
9.6×10−3 Wh (Figure 10a). This 12.5× improvement highlights the impact of continuous
batching and backend optimizations in TGI (see next subsection 4.4.4).

Further improvements are possible with fixed inter-arrival delays. As shown in Fig-
ure 10c, using a constant spacing of 50 ms reduces energy to as low as 1.1 × 10−3 Wh per
request, corresponding to a 100× energy reduction relative to the naive baseline (LLaMA
8B-BF16 using the standard transformers backend) - achieved purely via improved batch
consistency and GPU utilization.
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4.4.3 LLaMA 70B: Scaling Benefits Hold at Large Scale

We repeated the experiment on LLaMA 3.1–70B (4×H100s), keeping the same generation
settings. Despite the 10× increase in model size and the multi-GPU context, TGI achieved
a per-request energy consumption as low as 2.4 × 10−2 Wh - significantly lower than the
naive baseline for 8B-BF16 (1.2 × 10−1 Wh) (Figure 10b). This confirms that dynamic
batching and traffic shaping scale effectively to large models and hardware setups (see
next subsection 4.4.4).

4.4.4 Interpretation and Mechanisms

Two main mechanisms explain TGI’s strong performance:

• Continuous batching: Incoming requests are incrementally batched at the token
level as they arrive. Feedforward operations (e.g., MLP, QKV projections) are
executed jointly across all active sequences, while attention is batched via paged
mechanisms that group memory accesses efficiently across requests. This allows
dynamic, low-latency batching without waiting for full prompts.

• Kernel fusion and caching: Fused operations (e.g., QKV projections, FFN layers)
reduce intermediate memory writes and improve cache locality, further lowering
DRAM usage and power draw.

Arrival shaping directly affects both mechanisms. Regular spacing ensures a steady
stream of aligned requests, minimizing idle GPU time and improving the average batch
size. Random delays still help by introducing jitter, but fixed spacing offers the most
consistent utilization.

Summary. TGI combines efficient kernel execution with continuous batching strate-
gies that adapt to incoming traffic. By shaping request arrivals - even with lightweight
delay patterns - one can drastically improve batching quality and reduce energy con-
sumption. These results suggest that user-side scheduling and backend inference
optimizations are jointly critical to making LLM deployment more sustainable.

4.5 Macro Impact Estimate

To contextualize our results, we estimate the energy footprint of serving LLaMA 8B at
scale. In our baseline setup (float32, no batching), the mean GPU energy per request is
1.2 × 10−1 Wh (Figure 2a). At 106 requests per day, this yields:

Total_energy = 106 × 1.2 × 10−1 Wh = 1.2 × 102 kWh/day
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This is equivalent to the daily electricity use of over 10 French households4.
With optimized serving - using bfloat16, TGI, and regular arrival intervals - the

mean energy drops to 1.1 × 10−3 Wh/request, yielding:

Total_energy = 106 × 1.1 × 10−3 Wh = 1.1 × 100 kWh/day

This corresponds to a > 100× reduction, achieved solely through system-
level improvements. These results emphasize that sustainable LLM deployment depends
not only on model size or architecture, but also on scheduling and infrastructure.

4.6 Conclusion and Takeaways

Energy efficiency in LLM inference is not solely dictated by model architecture or size.
Instead, our experiments reveal a complex interplay between numerical precision, batch
shaping, and serving configuration - each of which can dramatically affect latency and
power draw.

• Precision matters- but only in compute-bound regimes. Lower-precision
formats (e.g., bfloat16, int8) yield significant speedups and energy savings during
prefill, particularly for large models. However, in memory-bound phases like decoding,
quantization often fails to improve - and may even worsen - efficiency due to overheads
like dequantization.

• Batching is critical to efficiency. Both static and dynamic batching reduce
energy per token by amortizing compute and memory overheads. However, prefill
is sensitive to padding inefficiencies, requiring careful shaping (e.g., bucketing) to
avoid regressions.

• Serving infrastructure shapes sustainability. Our experiments with TGI
demonstrate that the how of inference - i.e., the scheduling of requests - can impact
energy consumption by up to two orders of magnitude, even with the same model
and hardware.

• Energy profiling should be phase-aware. Decode and prefill exhibit funda-
mentally different compute characteristics, and should be measured and optimized
separately. Reporting aggregate energy alone may obscure key bottlenecks or
inefficiencies.

Taken together, our findings argue for a more holistic view of inference efficiency - one
that includes not just model optimization, but also system design and traffic shaping. As

4Based on an average of 4,255 kWh/year per household in France, i.e., ∼11.7 kWh/day. Source:
https://www.fournisseurs-electricite.com/compteur/consommation-electrique/moyenne
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LLMs continue to scale and proliferate, such systemic improvements will be critical to
making their deployment environmentally sustainable.
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5 Case Study III: Video Killed the Energy Budget:
Characterizing the Latency and Power Regimes of
Open Text-to-Video Models

Text-to-video (T2V) generation represents one of the most computationally demanding
applications of generative AI. Producing even a few seconds of coherent video requires
large diffusion transformers, dozens of denoising steps, and high spatial and temporal
resolutions, resulting in long runtimes and substantial energy consumption.

In this study, we develop a compute-bound analytical model of inference for WAN2.1-
T2V and validate its predictions through controlled benchmarks. We then extend our
analysis to six popular open-source T2V systems, comparing their latency and energy
profiles under default settings. Our results reveal quadratic scaling with spatial and
temporal dimensions, making video generation an extreme case of inference inefficiency
and a critical target for future optimization.

5.1 Theoretical Model of Latency and Energy

To ground our analysis, we focus on the WAN2.1-T2V-1.3B model [44], which serves
as our reference architecture. WAN2.1 is representative of modern latent text-to-video
diffusion systems: a pretrained text encoder provides conditioning, a timestep embedding
MLP injects the diffusion step index, a large DiT (Diffusion Transformer) performs the
bulk of spatio-temporal denoising, and a VAE decoder maps latent tensors back to pixel
space. This structure is shown in Figure 11. The same framework can be applied to other
recent models with minor adjustments. WAN2.1 is also the most downloaded text-to-video
model on the Hugging Face Hub at the time of writing, motivating its selection for an
in-depth study.

Figure 11: Simplified architecture of WAN2.1-T2V-1.3B.
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We are then able to derive a compute-bound analytical model of WAN2.1 inference,
decomposing FLOPs by operator and predicting latency and energy as explicit functions
of resolution (H, W ), number of frames T , and denoising steps S.

5.1.1 Compute vs. Memory-Bound Regimes

On modern GPUs such as the NVIDIA H100, inference kernels can be either:

• Compute-bound, when execution is limited by arithmetic throughput (FLOP/s).

• Memory-bound, when limited by memory bandwidth.

Profiling shows that the main operators of WAN2.1 inference (self-attention, cross-
attention, MLPs, VAE convolutions) are predominantly compute-bound. GPU utilization
remains saturated, and power traces indicate negligible CPU-induced idle time. We
therefore adopt a compute-bound model, following the classic roofline formulation [45],
where latency is proportional to total FLOPs divided by sustained throughput. This
approximation is consistent with prior studies of large-scale transformer workloads [46,
47, 48, 49, 50].

5.1.2 Notation and Constants

We follow the HPC convention where one multiply-add corresponds to two FLOPs.
Throughout, H ×W denotes the spatial resolution, T the number of frames, S the number
of denoising steps, N the number of DiT layers, d the hidden size, f the MLP expansion
factor, m the text conditioning length, g the number of classifier-free guidance (CFG)
passes, and ℓ the latent token length seen by the DiT. A complete list of symbols, constants,
and hardware parameters is provided in Appendix D.

The DiT token length ℓ grows with the spatial (H, W ) and temporal (T ) dimensions
of the latent grid:

ℓ =
(

1 + T

4

)
H

16
W

16 .

5.1.3 Operation-Level FLOP Breakdown

The total FLOPs per video generation can be decomposed into contributions from the
text encoder, timestep MLP, the diffusion transformer (DiT), and the VAE decoder, see
table 1. A full derivation of these FLOP formulas is provided in Appendix D, where we
detail each operator (self-attention, cross-attention, MLP, VAE, text encoder, timestep
MLP).
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Table 1: FLOP cost of WAN2.1-T2V-1.3B components. Top: once per video. Bottom:
per denoising step (to be multiplied by gS). Symbols are defined inline in Section 5.1,
with the complete list deferred to Appendix D.

Component FLOPs Notation

Once per video

Text encoder (T5) ptext Ltext

(
8md2

text + 4m2dtext + 4ftextmd2
text

)
Ftext

VAE decoder convolutions
Ndec,conv∑

j=1
2 k

(j)
t k

(j)
h k(j)

w C
(j)
in C

(j)
out T (j)H(j)W (j) FVAE,conv

VAE decoder 2D “middle” attention T∗

(
8 C2

∗L∗ + 4 L2
∗C∗

)
FVAE,mid-attn

Per denoising step (multiply by gS)

DiT
Self-attention (N layers) N

(
8ℓd2 + 4ℓ2d

)
Fself

Cross-attention (N layers) N
(
4ℓd2 + 4md2 + 4ℓmd

)
Fcross

MLP (N layers) N
(
4fℓd2)

Fmlp

Timestep MLP (shared across layers) 2 dτ d + 14 d2 Fτ

5.1.4 Total FLOPs

The total FLOPs for generating a video of spatial size H × W , T frames, and S steps is:

Ftotal = Ftext + FVAE,conv + FVAE,mid-attn + Sg ·
(
Fself + Fcross + Fmlp + Fτ

)
.

We define µ as the ratio between sustained and peak throughput:

µ = Ftotal/Dmeasured

Θpeak
.

Assuming compute-bound execution with empirical efficiency µ, and letting Θpeak

denote the GPU’s theoretical peak throughput in dense BF16, the total latency Dtotal of
generating a video can be approximated as:

Dtotal ≈ Ftotal

µ Θpeak
.

In practice, the H100 provides a dense BF16 peak of Θpeak = 989 TFLOP/s (NVIDIA
datasheet), but this level is unattainable. The empirical efficiency µ thus acts as a
correction factor, reflecting both hardware under-utilization (tile misalignment, kernel
overheads, memory-bound ops) and approximations of our latency model. For WAN2.1 –
after performing the experiments explained in section 5.2 – we obtain µ ≈ 0.456, consistent
with sustained FLOP utilization of 30–63% reported for large-scale transformer inference
on H100s [48, 49, 50]. We calibrated µ by linear regression of measured latencies against
theoretical FLOPs across our experiments, which yielded µ = 0.456 with negligible
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overhead and R2 = 0.998.

5.1.5 Energy Model

Since sustained GPU power remains close to Pmax during inference, the total energy
consumed Etotal:

Etotal ≈ Pmax · Dtotal.

Thus, energy and latency scale proportionally.

5.1.6 Predicted Scaling Regimes

From these equations, we can anticipate distinct computational regimes:

• Quadratic scaling in spatial and temporal dimensions. Since the DiT token
length ℓ grows linearly with H, W , and T , the self- and cross-attention terms
contribute O(ℓ2) FLOPs, leading to quadratic growth in latency and energy as
resolution or frame count increases.

• Linear scaling in denoising steps. Each step applies the same sequence of N

transformer layers, so the ideal cost scales as O(S).

• Negligible contributions from auxiliary components. The text encoder is
run once per video, and the timestep MLP adds only a small overhead per step.
Likewise, the VAE decoder scales linearly with voxel count T ×H×W and is quickly
dominated by the quadratic DiT cost.

In summary, the theoretical model predicts that WAN2.1 inference is transformer-
dominated and compute-bound, with quadratic regimes in spatial and temporal
dimensions, linear dependence on denoising steps, and minor overhead from condition-
ing networks. These predictions will be validated against empirical measurements in
Section 5.3.

5.2 Methodology

Our methodology combines two complementary perspectives. First, we perform controlled
micro-benchmarks on WAN2.1-T2V-1.3B, our reference model, to validate the scaling
regimes predicted by the theoretical model (Section 5.1). Second, we benchmark a diverse
set of recent open-source text-to-video models under default settings, to situate WAN2.1
within the broader ecosystem.
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5.2.1 Hardware and Measurement Protocol

All experiments were conducted on a dedicated NVIDIA H100 SXM GPU (80GB HBM3)
paired with an 8-core AMD EPYC 7R13 CPU, with no co-scheduled jobs. We measured
GPU and CPU energy using CodeCarbon [35], which interfaces with NVML and pyRAPL,
and estimated RAM energy using CodeCarbon’s default heuristic5.

To reduce noise, each measurement included two warmup iterations, followed by five
repeated runs. Inference used the Hugging Face Diffusers library [51] with default
generation parameters.

5.2.2 Controlled Scaling Experiments on WAN2.1-T2V-1.3B

To validate the theoretical model, we systematically varied the three key structural
parameters: resolution, number of frames, and denoising steps. Since the text encoder
always pads or truncates prompts to a fixed length of 512 tokens, the specific choice of
prompt does not affect runtime. We therefore fixed a single prompt and applied the same
warmup-and-repetition protocol as above to isolate structural scaling laws.

• Spatial resolution: from 256×256 to 3520×1980, both dimensions divisible by 8
(model constraint). Frames and steps fixed.

• Temporal length (frames): from 4 to 100 in increments of 4 (model constraint).
Resolution and steps fixed.

• Denoising steps: from 1 to 200. Resolution and frames fixed.

For each configuration we logged total latency (seconds) and energy for each hardware
component (GPU / CPU / RAM).

5.2.3 Cross-Model Benchmark

To provide a bird’s-eye view of energy and latency costs across current systems, we selected
a diverse set of models spanning different architectures and parameter scales (Table 2),
focusing on those that are among the most downloaded and trending on the Hugging Face
Hub at the time of writing.

For this benchmark, we generated 50 different prompts per model. Each prompt
was measured with the protocol above (2 warmups, 5 runs), yielding robust averages and
standard deviations that capture both runtime noise and input variability.

• AnimateDiff [52](License ) - lightweight motion-layer diffusion.

• CogVideoX-2b/5b [53] (License) - cascaded base + refiner stages.
5https://mlco2.github.io/codecarbon/methodology.html#ram
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• LTX-Video-0.9.7-dev [54](License) - autoregressive temporal modeling.

• Mochi-1-preview [55](License) - large-scale diffusion optimized for motion realism.

• WAN2.1-T2V (1.3B and 14B) [44](License) - high-resolution latent diffusion
with DiT backbone.

Table 2: Default generation settings for each model (taken from Hugging Face model
cards).

Model Steps Resolution (HxW) Frames FPS
AnimateDiff 4 512×512 16 10
CogVideoX-2b 50 480×720 49 8
CogVideoX-5b 50 480×720 49 8
LTX-Video 40 512×704 121 24
Mochi-1-preview 64 480×848 84 30
WAN2.1-T2V-1.3B 50 720×1280 81 15
WAN2.1-T2V-14B 50 720×1280 81 15

We did not assess perceptual quality to isolate compute behavior; instead, these
experiments confront the predicted quadratic and linear regimes (Section 5.1) with actual
scaling laws and scheduler-induced deviations. All code, prompts, and configurations
are available in an anonymized repository at GitHub repo, and all generated videos are
released on the Hugging Face Hub via an organization page.

5.3 Empirical Findings

We now compare the theoretical predictions of Section 5.1 with empirical measurements
– first by conducting a fine-grained validation on WAN2.1-T2V-1.3B and comparing
measured energy and latency against theoretical curves as resolution, temporal length,
and denoising steps vary. We then situate these results in the broader context of other
open-source video generation models.

5.3.1 Validation on WAN2.1-T2V-1.3B

In this section we focus exclusively on GPU energy and latency, since GPU accounts for
80–90% of the total consumption and dominates inference cost. Figures show theoretical
predictions (stacked areas by operator: self-attention, cross-attention, MLP, VAE, text
encoder, timestep MLP) with empirical measurements overlaid as points with error bars.

Spatial Resolution Increasing the resolution from 256×256 to 3520×1980 (frames - 81
and steps - 50 fixed) causes both latency and energy to grow quadratically. Theoretical
predictions (stacked by operator) and empirical measurements are compared in Figure 12.
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The agreement remains strong across the entire range, with modest deviations at high
resolutions (see Table 3). The VAE contribution remains minor compared to the DiT
blocks.

(a) GPU energy vs. spatial resolution (b) Latency vs. spatial resolution

Figure 12: Empirical results (points) vs. theoretical predictions (stacked areas per
operator) as a function of resolution. Both energy and latency follow the predicted
quadratic regime.

Temporal Length (Frames) Varying the number of frames from 4 to 100 (resolution -
720 × 1280 and steps - 50 fixed) also induces quadratic growth in both latency and energy,
as shown in Figure 13. This behavior directly follows from the quadratic dependence of
attention on the token count ℓ. The model closely tracks empirical results, with errors
reported in Table 3.

(a) GPU energy vs. number of frames (b) Latency vs. number of frames

Figure 13: Empirical results (points) vs. theoretical predictions (stacked areas per
operator) as a function of temporal length. Both metrics follow the quadratic regime
predicted by the model.

Denoising Steps In contrast to resolution and frame count (resolution - 720 × 1280 and
frames - 81 fixed), scaling with the number of denoising steps is perfectly linear, exactly as
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predicted by the theoretical model. Each additional step applies the same N transformer
layers, leading to a cost that grows proportionally with S. Figure 14 shows near-perfect
alignment between predictions and measurements, with errors below 2% (Table 3).

(a) GPU energy vs. denoising steps (b) Latency vs. denoising steps

Figure 14: Empirical results (points) vs. theoretical predictions (stacked areas per
operator) as a function of denoising steps. Both energy and latency scale linearly with S,
in near-perfect agreement with the compute-bound model.

Table 3: Mean percentage error (MPE) between theoretical predictions and empirical
measurements.

Energy Latency
Resolution scaling 11.6% 14.0%
Temporal length 6.6% 10.5%
Denoising steps 1.9% 1.9%

5.3.2 Cross-Model Comparison

Finally, we compare average GPU energy consumption, latency, and component-wise
energy shares across seven open-source text-to-video models under their default generation
settings (Figure 15).

We observe orders-of-magnitude disparities: AnimateDiff requires only 0.14 Wh
in total, while WAN2.1-T2V-14B consumes over 415 Wh, a factor of nearly 3000×.
Latency follows a similar trend, with lightweight models producing clips in less than
a second, while large-scale architectures such as WAN2.1-14B or Mochi require several
minutes of inference. These differences stem from:

• Model size: larger models (WAN2.1-14B, Mochi) process more parameters per
step.

• Sampling steps: AnimateDiff runs in 4 steps vs. 60–64 for others.
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(a) GPU energy per model for one video
(b) Generation latency per model for one
video

(c) Energy shares (GPU/CPU/RAM)

Figure 15: Cross-model comparison of energy and latency. Top: GPU energy and latency
(log scale, with std). Bottom: relative contributions of GPU, CPU, and RAM.

• Video length: frame count and FPS vary significantly.

• Architectural complexity: cascaded pipelines (CogVideoX) require multiple
stages.

As shown in the bottom panel, GPU consistently dominates energy consumption
(>80%) across all models, confirming a compute-bound regime with high GPU utilization.
CPU and RAM contributions remain secondary, though slightly more pronounced in
cascaded or multi-stage pipelines.
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Table 4: Cross-model average latency and energy consumption (default settings). All
values are reported as mean ± std.

Model Latency (s) GPU (Wh) CPU (Wh) RAM (Wh)

WAN2.1-T2V-14B 1875 ± 2.1 359.7 ± 0.5 35.6 ± 4.0 19.8 ± 0.02
WAN2.1-T2V-1.3B 410 ± 0.5 78.8 ± 0.1 7.4 ± 0.4 4.3 ± 0.01
Mochi-1-preview 263 ± 0.5 44.7 ± 0.2 4.6 ± 0.01 2.8 ± 0.01
CogVideoX-5B 124 ± 0.4 21.6 ± 0.05 2.4 ± 0.03 1.3 ± 0.004
CogVideoX-2B 50.6 ± 0.2 8.3 ± 0.03 0.84 ± 0.04 0.53 ± 0.002
LTX-Video-0.9.7-dev 9.7 ± 0.01 3.16 ± 0.006 0.32 ± 0.002 0.19 ± 0.001
AnimateDiff 0.68 ± 0.002 0.115 ± 0.001 0.016 ± 0.0001 0.008 ± 0.00003

5.4 Discussion

Our results confirm that WAN2.1 inference operates in a compute-bound regime, where
latency and energy scale quadratically with spatial (H, W ) and temporal (T ) dimensions,
and linearly with denoising steps (S). The close match between theory and measurement
validates the analytical model and provides clear guidance for practitioners.

Implications for efficiency. Quadratic scaling in H, W , and T means that even
modest increases in resolution or video length incur steep costs: doubling any of these
dimensions in isolation yields ∼ 4× more compute, while scaling multiple dimensions
compounds multiplicatively (e.g., H and W doubled → 16×). Thus, output size control is
a powerful lever: reducing spatial or temporal length often saves more than architectural
changes. In practice, offering presets (e.g., “low resolution, low frames” vs. “high fidelity”)
balances user needs with energy cost.

Validated linear regime in steps. In contrast, denoising steps scale linearly, with
measured costs matching theoretical predictions once empirical efficiency µ is applied.
This makes S a reliable knob for latency–quality trade-offs: halving steps roughly halves
both latency and energy.

Opportunities for model-level improvements. The public Hugging Face imple-
mentation of WAN2.1 lacks inference-time optimizations, but the original paper suggests
effective techniques: (i) diffusion caching, reusing redundant attention/CFG activations for
up to 1.62× savings, and (ii) quantization, using FP8/INT8 mixed precision for ∼ 1.27×
speedup without loss. Other avenues include step pruning, low-rank attention, and kernel
fusion to better exploit GPU tensor cores.
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Broader implications. Video diffusion is far more costly than text or image generation.
Normalized per output, Luccioni et al. [9] report average costs of ∼0.002 Wh for text
classification, 0.047 Wh for text generation, and 2.9 Wh for image generation. By
comparison, generating a single short video with WAN2.1–T2V–1.3B consumes nearly ∼90
Wh. This places video diffusion roughly 30× more costly than image generation, 2,000×
than text generation, and 45,000× than text classification. At scale, the quadratic growth
in (H, W, T ) implies rapidly increasing hardware and environmental costs, highlighting
the need for hardware-aware optimizations and sustainable model design.

5.5 Limitations and Conclusion

Limitations. Our analysis provides a detailed characterization of WAN2.1–1.3B using
the open-source Hugging Face codebase. As such, it does not capture potential improve-
ments from internal optimizations such as diffusion caching, quantization, or kernel fusion.
The theoretical model also assumes uniform attention cost and ignores memory hierarchy
effects, which may cause deviations for small inputs or extreme aspect ratios.

Energy measurements were conducted on a single hardware platform (NVIDIA H100
SXM) and may not generalize to other accelerators or low-power deployments (e.g., L4 or
consumer GPUs). We deliberately excluded perceptual quality from our scope, leaving
open the question of energy–fidelity tradeoffs. Finally, many production T2V systems
(e.g., Veo) also generate audio, whose contribution to energy cost remains unexplored.

Conclusion. We presented a systematic study of latency and energy consumption in
text-to-video generation. Through fine-grained experiments on WAN2.1, we validated
a simple analytical model that predicts quadratic scaling with spatial and temporal
dimensions, and linear scaling with denoising steps. Cross-model benchmarks confirmed
that this compute-bound regime extends broadly across recent open-source systems, with
orders-of-magnitude disparities in cost depending on model size, sampling strategy, and
video length.

These findings highlight both the structural inefficiency of current video diffusion
pipelines and the urgent need for efficiency-oriented design. Promising avenues include dif-
fusion caching, low-precision inference, step pruning, and improved attention mechanisms.
We hope this work serves as both a benchmark reference and a modeling framework to
guide future research on sustainable generative video systems.
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6 Discussion and Limitations

6.1 Cross-Case Discussion

The three case studies presented in this report address different levels of the inference stack
- from user interactions to system deployment and model architecture - yet together they
outline a consistent picture of where inefficiencies arise and how they can be mitigated.

From micro-interactions to macro costs. The politeness study illustrates how even
trivial conversational habits, such as appending a “thank you,” trigger full inference passes
with measurable energy footprints. While negligible in isolation, these costs accumulate
at scale, given the billions of requests processed daily by LLMs. This highlights the
importance of understanding usage patterns and designing prompts, interfaces, or model
behaviors that minimize unnecessary computation without compromising user experience.

System-level levers. The analysis of quantization, batching, and request scheduling
shows that system-level choices often have a greater impact on energy efficiency than the
architecture itself. Quantization delivers strong gains only in compute-bound regimes,
whereas batching reduces per-request costs by amortizing overheads, and traffic shaping can
yield two orders-of-magnitude efficiency improvements in realistic serving scenarios. These
findings emphasize that sustainable deployment cannot be achieved solely by improving
models; it requires joint optimization of the serving stack and workload management.

Architectural scaling in video models. The study of text-to-video generation exposes
the structural inefficiency of current multimodal systems. Quadratic scaling in spatial
and temporal dimensions leads to extreme energy costs, orders of magnitude higher than
text or image generation. This serves as a boundary case for inference sustainability,
underscoring the need for new architectural innovations such as diffusion caching, step
pruning, or low-rank approximations, as well as user-facing controls over output size and
fidelity.

Methodological implications. Across all case studies, we found that phase-level
decomposition (prefill vs. decode) and hardware-aware modeling were essential to in-
terpreting empirical measurements. Latency models that distinguish compute - from
memory-bound regimes align closely with observed energy trends, suggesting that the-
oretical frameworks can complement measurement in predicting efficiency across tasks,
models, and infrastructures.

38



6.2 Limitations

While the three case studies in this report provide novel insights into the latency and
energy behavior of generative AI models, several limitations constrain the generality and
scope of our findings. These limitations fall into four main categories: hardware coverage,
methodological scope, measurement fidelity, and external validity.

Hardware coverage. All experiments were conducted primarily on NVIDIA H100
GPUs, with limited exploration of alternative accelerators. Although the H100 represents
the state of the art in datacenter deployment, it differs significantly from other hardware
commonly used for inference, including earlier NVIDIA generations (A100, L4, consumer
RTX), AMD GPUs, Google TPUs, and specialized inference accelerators (AWS Inferentia,
Cerebras). Each of these platforms has distinct architectural trade-offs in terms of compute
throughput, memory bandwidth, cache hierarchy, and power management. As a result,
the phase-level behaviors and efficiency trends we report may not generalize directly.
Extending these benchmarks across hardware is crucial to fully capture the diversity of
real-world deployments.

Methodological scope. Our analysis focused on isolated inference workloads, with
batch size, prompt length, and output length controlled systematically. In practice,
production serving environments introduce additional complexities, including multi-tenant
scheduling, distributed inference across multiple GPUs, and network I/O. These factors
can significantly alter latency and energy profiles. For example, in multi-GPU settings,
interconnect bandwidth and synchronization overheads may dominate, while network
traffic can become the primary contributor to energy costs in cloud deployments. By
focusing on controlled single-node benchmarks, we gain precision but lose some ecological
validity.

Measurement fidelity. Although we employed established tools such as CodeCarbon,
NVML, and pyRAPL, energy measurement remains imperfect. GPU power telemetry can
suffer from sampling delays, averaging effects, and discrepancies between instantaneous
and reported values. RAM energy, in particular, was estimated via CodeCarbon’s heuristic
rather than direct measurement, limiting the accuracy of absolute values. Furthermore, we
measured hardware energy consumption in Wh, without including embodied emissions from
hardware manufacturing or datacenter overheads such as cooling and redundancy. As such,
our numbers reflect direct operational energy but underestimate the full environmental
impact of generative inference.

Model and task diversity. We concentrated on a limited set of open-source models:
the LLaMA 3.1 and Qwen families for LLMs, Mistral-7B, and WAN2.1 plus five additional
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systems for video generation. While representative, this selection excludes many important
classes of models, such as large proprietary LLMs (GPT-4, Claude, Gemini), multimodal
foundation models, and lightweight architectures optimized for edge deployment. Likewise,
our case studies targeted conversational prompts and text-to-video generation; other tasks
such as retrieval-augmented generation, reasoning, or long-context summarization may
exhibit different scaling laws and energy characteristics.

Quality-efficiency trade-offs. In all experiments, we deliberately excluded evaluations
of model quality, focusing solely on latency and energy. However, in real deployments,
efficiency cannot be considered in isolation: reductions in energy may come at the cost
of degraded accuracy, fluency, or perceptual fidelity. For instance, quantization may
introduce numerical errors, batching may increase response latency, and step pruning
in diffusion models may reduce visual quality. Without jointly measuring quality, it is
difficult to fully characterize the trade-off space in which practitioners must operate.

Scope of carbon and cost accounting. Our results are reported in watt-hours,
which provide a direct measure of operational energy but not of higher-level externalities.
Translating these numbers into carbon emissions requires assumptions about datacenter
energy mix, cooling efficiency, and geographic deployment. Likewise, mapping energy
to financial cost depends on electricity pricing, hardware amortization, and operational
expenses. We did not attempt these translations systematically, which limits the ability
to directly connect our measurements to environmental and economic outcomes.

Simplifications in theoretical modeling. The latency and energy models developed
in this work adopt several simplifications. We assumed compute-bound execution for video
generation and ignored kernel launch overheads or cache effects in LLMs. In practice,
asynchronous compute–memory overlap, inter-kernel scheduling delays, and caching
behavior can significantly affect runtime and energy. While we calibrated empirical
efficiency factors (µ) to absorb these effects, this reduces interpretability and may hide
second-order behaviors. Future work could integrate detailed kernel-level profiling to
refine these models.

User-level scope. The politeness case study used short, controlled prompts as a
reproducible proxy for micro-interactions. While this offers clarity, it may not reflect
the full variety of conversational usage, where context length, dialogue structure, and
multilingual interactions play a significant role. User behavior can amplify or mitigate
inefficiencies in ways not captured by our controlled setup. Broader datasets of real-world
conversations would provide stronger evidence of aggregate impact.
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Summary. Overall, these limitations do not undermine the validity of our main findings,
but they constrain their generality and scope. The results should be interpreted as
controlled benchmarks and modeling exercises, rather than direct estimates of real-world
deployment costs. Addressing these limitations - through broader hardware coverage,
richer measurement tools, inclusion of quality trade-offs, and system-level deployments -
represents an important avenue for future work.

7 Conclusion and Perspectives
This internship contributes a multi-level investigation of the latency and energy costs of
generative AI inference, combining theoretical analysis with empirical benchmarking on
state-of-the-art GPUs. The key insights are:

• Energy costs emerge not only from large-scale training but also from everyday
inference, including ubiquitous micro-interactions.

• System-level design choices such as precision, batching, and scheduling can reshape
energy efficiency by orders of magnitude, often more than architectural factors.

• Video generation exemplifies the structural limits of current generative pipelines,
with quadratic scaling in resolution and frame count making sustainability a pressing
concern.

Beyond their scientific contribution, these results were integrated into Hugging Face’s
open-source ecosystem, fostering transparency, reproducibility, and practical uptake by
the community.

Looking forward, several directions appear promising. Expanding measurements
to diverse hardware accelerators (e.g., AMD GPUs, TPUs, low-power devices) would
strengthen generalizability. Integrating carbon accounting and cost metrics would connect
raw energy measurements to real-world environmental and economic impacts. Finally,
coupling efficiency analysis with quality evaluation would illuminate the trade-offs between
sustainability and user-facing performance.

In short, this work demonstrates that efficiency must be addressed across all levels of
the inference stack - from user prompts to serving infrastructure and model architecture.
By doing so, we can begin to design generative AI systems that are not only powerful and
versatile, but also sustainable and responsible.
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A Theoretical Latency Analysis of LLaMA 3.1 8B
(FP32) on NVIDIA H100 SXM

Modeling assumptions. In this appendix, we provide a theoretical latency analysis
of LLaMA 3.1 8B executed in FP32 on an NVIDIA H100 GPU. We adopt a simplified
performance model in which compute and memory operations are assumed to run asyn-
chronously. Each operation is characterized either as compute-bound or memory-bound
depending on its FLOP count Fo and data transfer volume Do, relative to the hardware
peaks Fmax (floating-point throughput) and Bmax (memory bandwidth). We neglect kernel
launch overhead, thread block underutilization, memory misalignment, and other low-level
effects, which we subsume into empirical correction factors µcomp and µmem calibrated a
posteriori. The model assumes the absence of fused kernels and relies on HBM3 bandwidth
as a proxy for effective cache performance.

A.1 Hardware and Model Constants for Llama-3.1 B on NVIDIA
H100

Compute time and memory time. For each operation o with Fo floating-point
operations and Do bytes of data transfer, the wall-clock execution time on the GPU is
bounded by either the compute throughput or the memory bandwidth:

tcmp
o = Fo

Feff
, tmem

o = Do

Beff
, to = max

(
tcmp
o , tmem

o

)
. (1)

This fundamental relation underpins the latency calculations in Tables 7 and 8.

Model hyperparameters. Table 6 lists the main model-level symbols used throughout
this analysis and their default values for Llama-2 8B in FP32.

A.2 Prefill Phase (Prompt Processing)

During the prefill phase, the model processes the input prompt of length s using N stacked
Transformer blocks. Each block performs a sequence of elementary operations listed in
Table 7, including normalization, projections, attention, and feed-forward layers. The
table reports the symbolic FLOP count Fo, the data volume Do, and the critical sequence
length s⋆ at which the operation becomes memory-bound (see Eq. (1)).

A.2.1 Closed-Form Latency (dominant terms)

To keep the latency model interpretable and focused on the critical path, we retain only
the four operations that dominate wall-clock time in practice during the prefill phase of
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Table 5: Effective ceilings adopted in the FP32 analysis (H100 SXM 80 GB, ECC off, June
2025 official specs).

Quantity Symbol Value
Peak FP32 throughput (SM) Fmax 6.7 × 1013 FLOP s−1

Raw HBM3 bandwidth Bmax 3.35 × 1012 B s−1

Effective compute throughput Feff µcomp · Fmax
Effective memory bandwidth Beff µmem · Bmax

Compute efficiency factor µcomp 0.7
Memory efficiency factor µmem 0.28

Table 6: Model-level symbols and default values for Llama-3.1 8B (FP32).

Description Symbol Value
Number of Transformer blocks N 32
Vocabulary size V 128 256
Word size (FP32) bw 4 bytes
Prompt length s 1–128 000
Number of generated tokens g 1–128 000
Batch size b 1
Query projection (Q)

Number of heads nq 32
Dimension per head d 128
Total hidden size hq = nqd 4 096

Key/Value projections (K,V)
Number of KV heads (GQA) nkv 8
Dimension per head d 128
Total KV size hkv = nkvd 1 024

Feed-forward network (FFN)
Hidden expansion size hff 14 336
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Table 7: Operation-wise cost during prefill for LLaMA-3.1 8B (FP32). The table lists
the number of FLOPs and bytes transferred per operation, along with the switching point
s⋆ beyond which memory bandwidth becomes the limiting factor.

Operation and Formula FLOP Fo Bytes Do Switching length s⋆

Executed once per sequence

Token + position lookup 0 bshqbw M

Executed N times per block

LayerNorm1 (RMSNorm) 5bshq 2bshqbw M
Q projection (xWQ, WQ ∈ Rhq×hq ) 2bsh2

q (2bshq + h2
q)bw M ≤ 40.8 ≤ C

K projection (xWK , WK ∈ Rhq×hkv ) 2bshqhkv (bs(hq + hkv) + hqhkv)bw M ≤ 42.5 ≤ C
V projection (xWV , WV ∈ Rhq×hkv ) 2bshqhkv (bs(hq + hkv) + hqhkv)bw M ≤ 42.5 ≤ C
RoPE Q 5bshq 2bs(hq + d)bw M
RoPE K 5bshkv 2bs(hkv + d)bw M
Flash Attention (P · V , with P = softmax(QK⊤)) bs2(4hq + 5nq) (4bshq + bshkv + bnqs2)bw M ≤ 99.59 ≤ C
Output proj. WO (xWO ∈ Rhq×hq ) 2bsh2

q (2bshq + h2
q)bw M ≤ 40.80 ≤ C

Residual add1 bshq 2bshqbw M
LayerNorm2 5bshq 2bshqbw M
FFN up proj. (xWup, W ∈ Rhq×hff) 2bshqhff (bs(hq + hff) + hqhff)bw M ≤ 40.51 ≤ C
SiLU activation 4bshff 2bshffbw M
FFN gate proj. (xWgate, W ∈ Rhq×hff) 2bshqhff (bs(hq + hff) + hqhff)bw M ≤ 40.51 ≤ C
Element-wise mult (gate · up) bshff 2bshffbw M
FFN down proj. (xWdown, W ∈ Rhff×hq ) 2bshqhff (bs(hq + hff) + hqhff)bw M ≤ 40.51 ≤ C
Residual add2 bshq 2bshqbw M

After the N blocks

Final LayerNorm 5bshq 2bshqbw M
LM head (xWLM, W ∈ Rhq×V ) 2bhqV (bhq + V hq + b)bw M
Softmax on logits 5bV 2bV bw M
Top-k / Argmax / Sampling (sort, mask, sample) ∼ 0.1bV bV bw M
Post-processing (bitwise ops, comparisons, scatter) negligible ∼ bV bw M
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LLaMA-3.1:

• Q/K/V projections: Three matrix multiplications of shape [bs, hq] · [hq, hq or hkv],
contributing 2bs(h2

q + 2hqhkv) FLOPs and significant memory bandwidth due to
read/write of large activations.

• Flash Attention: A fused kernel computing QK⊤, softmax, and P · V in one pass,
with total cost ∼ 9bs2hq FLOPs and complex memory access patterns. This term
dominates for long prompts due to quadratic scaling in s.

• FFN up/down projections: Two large matrix multiplications [bs, hq] · [hq, hff]
and [bs, hff] · [hff, hq], yielding 4bshqhff FLOPs, which are compute-bound for typical
hidden sizes.

• LM head: The final projection of shape [bs, hq]·[hq, V ] with cost 2bshqV , particularly
expensive for large vocabulary sizes V .

These four operations account for the majority of latency observed during inference
on modern GPUs, especially for medium to large batch sizes and prompt lengths.

For each operation o we denote by tcmp
o the compute-bound time and by tmem

o the
memory-bound time, and we write to(s) = max

(
tcmp
o (s), tmem

o (s)
)

as in Eq. (1). With the
symbols introduced in Tables 5–6, the per-token latencies of the dominant operations are
given by:

tqkv(s) = 2 max
(

2bs hq hkv

Feff
, (bs (hq+hkv)+hq hkv) bw

Beff

)
+ max

(
2bs h2

q

Feff
,

(2bs hq+h2
q) bw

Beff

)
, (2)

tflash(s) = max
(

bs2(4hq+5nq)
Feff

, (4bshq+bshkv+bnqs2)bw
Beff

)
, (3)

tffn(s) = 3 max
(

2bs hqhff
Feff

, bs(hq+hff)+hqhff) bw
Beff

)
, (4)

tlm(s) = max
(

2b hqV
Feff

, (b hq+V hq+b) bw
Beff

)
. (5)

Putting everything together, the closed-form prefill latency for a prompt of length s

processed by N Transformer blocks is

tprefill(s) = N
[
tqkv(s) + tflash(s) + tffn(s)

]
+ tlm(s). (6)

All lighter operations (token lookup, normalisations, residual adds, gelu, etc.) have
been omitted because they contribute at most a few percent to the total runtime under
the hardware ceilings of Table 5.
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Asymptotic regimes in s

Evaluating Eqs. (7)–(6) with the default constants from Table 6 reveals four qualitatively
distinct regimes:

1. Constant regime (0 ≤ s ≲ 100)
tprefill ≈ const = hq(2Nhkv+Nhq+3Nhff+V )bw

Beff
≈ 2.63 × 10−2 s

The memory-bound constant term, independent of s, dominates. As a result, tprefill

is effectively flat.

2. Large-context regime (s ≳ 100)

• Linear sub-regime (100 < s ≪ 2,000):
tprefill ≈ γs

The small memory-bound terms quickly become negligible. All dominant terms
are compute-bound, and latency scales linearly with s.

• Transition regime (2,000 ≲ s ≲ 30,000):
tprefill ≈ γs + ηs2

The quadratic attention term becomes significant, and the latency shows a
mixed linear–quadratic behavior.

• Quadratic regime (s ≳ 30,000):
tprefill ≈ ηs2

The quadratic term outweighs the linear term by a factor ≥ 10, making the
total latency effectively quadratic.

With constants:

γ = bhq(2Nhq + 6Nhff + 4Nhkv)
Feff

≈ 2.40×10−4 s/token, η = 4bNhq

Feff
≈ 1.68×10−8 s/token2

In summary, the latency curve is:

• constant for very short prompts (s ≲ 100),

• linear over most practical sequence lengths,

• and quadratic only in ultra-long-context scenarios, not reached with our Llama 3.1
8B.
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A.3 Decode Phase (Auto-Regressive)

During the decode phase the model generates a sequence of g new tokens one step at a
time. At step t ∈ {1, . . . , g} the current context length is

ℓt = s + t − 1,

i.e. the s prompt tokens plus the t − 1 tokens already produced. All keys and values
computed at previous steps are kept in an in-memory KV-cache. Therefore only the query
for the current token is freshly projected, but it must attend to all ℓt cached keys and
values.

A.3.1 Operation-wise cost per generated token

Table 8 lists the elementary operations executed for one generated token when the context
length is ℓ, together with their symbolic floating-point cost Fo, the data volume Do,
and the crossover length ℓ⋆ at which the operation switches from memory-bound to
compute-bound according to Eq. (1). Except for the dot-product attention, all operations
are independent of ℓ.

A.3.2 Closed-form latency for one token

With the same notation as in Sec. A.2.1, the dominant per-token latencies are

tqkv(s) = 2 max
(

2b hq hkv

Feff
, (b (hq+hkv)+hq hkv) bw

Beff

)
+ max

(
2b h2

q

Feff
,

(2b hq+h2
q) bw

Beff

)
, (7)

tflash(s) = max
(

bℓ(4hq+5nq)
Feff

, (4bhq+bhkvℓ+bnqℓ)bw
Beff

)
, (8)

tffn(s) = 3 max
(

2b hqhff
Feff

, b(hq+hff)+hqhff) bw
Beff

)
, (9)

tlm(s) = max
(

2b hqV
Feff

, (b hq+V hq+b) bw
Beff

)
. (10)

In the case of the H100 GPU and the Llama 3.1 8B model (FP32), all operations
remain memory-bound across the board.

A.3.3 End-to-end latency for g generated tokens

Let ℓt = s + t − 1 be the context length at step t. The total decode latency is the sum of
the g step-latencies:

tdecode(s, g) =
s+g−1∑
ℓt=s+1

[
N

(
tproj + tffn + tattn(ℓt)

)
+ tlm

]
. (11)
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Since tproj, tffn, tlm do not depend on ℓt, they contribute a purely linear term, whereas
tattn(ℓt) contains all dependence on ℓt. We start the summation at ℓt = s + 1 (i.e. t = 2)
since the generation of the first token (t = 1) is typically included in the prefill latency.

tdecode(s, g) = A(g − 1) + B(g − 1)(g + 2s)

= δ(s)g + ϵg2 (quadratic in g)

= θ(g) + λ(g)s (linear in s)

A =
((12Nb + V )hq + 2Nbhkv + Nbhff + Nh2

q + 3Nhqhff + 2Nhkvhq)bw

Beff
= 6.40 × 10−3FLOPs

B = Nb(nq + hkv)bw

Beff
= 3.91 × 10−7s

(12)

With the default parameters for H100 and Llama 3.1 8B:

δ(s) = (A + 2sB − B) ≈ 6.40 × 10−3 + 7.83 × 10−7 · s [s]

ϵ = B ≈ 3.91 × 10−7 [s/token2]

θ(g) = (A + g)(g − 1) ≈ 8.21 × 101(g − 1) + 3.91 × 10−7g2 [s]

λ(g) = 2B(g − 1) ≈ 7.83 × 10−7(g−1) [s/token]

Asymptotic regimes in g and s

1. Fixed prompt (s), vary generation (g). The linear–quadratic knee

g⋆(s) = A

B
+ 2s ≈ 7.93×104 + 2s

The quadratic term becomes non-negligible for large generation lengths g; a longer
prompt s delays the onset of this quadratic regime, but increases the overall latency.

2. Fixed generation (g), vary prompt (s). Splitting tdecode into a constant and an
s-linear part, their crossover (the constant becoming less important than the linear term):

s⋆ ≈ A

2B
+ g

2 ≈ 3.96×104 + 0.5g

For small prompt lengths, the constant term clearly dominates; for very larger prompts,
the linear term becomes significant. A larger generation length g delays the appearance of
this linear regime.

In summary, the decode latency behaves as:
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• linear in both s and g across nearly all practical use cases,

• and quadratic in g only for extremely long generations (g ≳ 108), with the prompt
length s further delaying this regime.
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B Latency Comparison by Numerical Precision

Figure 16: Mean latency per request (with variance across runs) for different models and
data types during the prefill phase. Lower-precision formats generally reduce latency,
with diminishing returns for already small models.
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Figure 17: Mean latency per generated token (with variance across runs) for different
models and data types during the decode phase. Memory-bound regimes lead to latency
plateaus despite lower precision.

C Latency Comparison by Batch Size
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Figure 18: Latency per input token on LLaMA 3.1 8B across batch sizes. Left: Effective
tokens only (excluding padding). Right: Computed tokens including padding overhead.
Increasing batch size improves compute amortization but introduces padding-induced
inefficiencies.

Figure 19: Latency per output token (effective = computed) across batch sizes. Gains
plateau at moderate batch sizes due to limits in parallelism and autoregressive nature of
decoding.

D Detailed FLOP Derivations and Scaling Laws for
Wan 2.1

Conventions. We follow the HPC convention where one multiply–add equals two
FLOPs. Matrix multiplications of shape (a × b) · (b × c) therefore cost 2abc FLOPs. Bias
additions, activations, layer norms, and softmax are lower order and omitted unless stated.
All results below apply per forward pass.
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D.1 Latent Tokenization and Shapes

Let the video have T frames and spatial size H × W in pixels. The VAE downsamples
temporally by a factor vt and spatially by vs, and the DiT operates on spatial patches of
size ph × pw in the latent grid. The token length ℓ seen by the DiT is

ℓ =
(

1 + T

vt

)
H

vs ph

W

vs pw

. (13)

In WAN2.1 we use (vt, vs, ph, pw) = (4, 8, 2, 2), hence the shorthand ℓ = (1 + T
4 ) H

16
W
16 used

in the main text.

D.2 Self-Attention in the DiT

Let d be the model width and h the number of heads (with dh = d/h). For a sequence of
length ℓ:

Q,K,V projections: 3 × 2 ℓd2 = 6 ℓd2

Attention logits (QK⊤) : 2 ℓ2d

Weighted sum (AV ) : 2 ℓ2d

Output projection: 2 ℓd2 . (14)

Summing on all N DiT layers yields

Fself = N × (8 ℓd2 + 4 ℓ2d) . (15)

(The head count h cancels out, since h · dh = d.)

D.3 Cross-Attention (Video → Text)

Let m be the number of text tokens and d the shared width. Assuming no KV cache (K,V
recomputed each denoising step as it is done in the current official implementation) and
one cross-attention block per DiT layer:

Query from video: 2 ℓd2

Keys/values from text: 4 md2 (K and V)

Attention products: 2 ℓmd + 2 ℓmd = 4 ℓmd

Output projection: 2 ℓd2 . (16)
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Hence over the N layers

Fcross = N × (4 ℓd2 + 4 md2 + 4 ℓmd) . (17)

With KV caching, the 4md2 term becomes once-per-video while the 4ℓmd products remain
per step. With windowed or factorized attention, ℓ or m may be replaced by the effective
window size.

D.4 Transformer MLP

With expansion factor f and sequence length ℓ, a two-layer MLP d→fd→d costs over
all DiT layers

Fmlp = N × 4f ℓd2 . (18)

D.5 Stacking Across S Steps, and CFG

Let g denote the number of conditional forward passes (CGF) per denoising step (g = 2
under classifier-free guidance). Combining (15)–(18), the DiT cost is

FDiT(T, H, W ; S, N, d, f, m, g) = g S ×
(
Fself + Fcross + Fmlp

)
, (19)

with ℓ given by (13).

D.6 Text Encoder

For a Ltext-layer encoder (e.g., T5/CLIP-like) with width dtext, expansion ftext, and m

tokens:

Self-attn per layer: 8 md2
text + 4 m2dtext

FFN per layer: 4ftext md2
text . (20)

For ptext forward passes per video (e.g., ptext = 2 for conditional and unconditional
prompts),

Ftext = ptext Ltext
(
8 md2

text + 4 m2dtext + 4ftext md2
text

)
. (21)

This term is once-per-video, independent of S.
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D.7 Timestep Embedding MLP

Mapping a scalar diffusion step to a d-dim vector and injecting it into each block via a
small MLP with hidden width dτ :

Fτ = gS(2 dτ d + 14 d2). (22)

D.8 VAE: Convolutions and Middle Attention

We account for the VAE cost as the sum of (i) all convolutional layers along the decoder
and (ii) a 2D self-attention “middle” block evaluated independently per time slice.

Convolutional layers. For a 3D convolution with kernel (k(j)
t , k

(j)
h , k(j)

w ), channels
C

(j)
in →C

(j)
out and output size T (j) × H(j) × W (j), the cost is

F
(j)
conv3d = 2 k

(j)
t k

(j)
h k(j)

w C
(j)
in C

(j)
out T (j)H(j)W (j) . (23)

Summing over the decoder path gives FVAE,conv = ∑Ndec,conv
j=1 F

(j)
conv3d, with concrete per-layer

shapes provided in Table 10. WAN-2.1 VAE include a 2D self-attention middle block
evaluated independently on each time slice (L∗ = H∗W∗, channel width C∗):

FVAE,mid-attn = T∗
(
8 C2

∗L∗ + 4 L2
∗C∗

)
. (24)

Middle self-attention (2D, per time slice). Let C∗ be the channel width at the
middle resolution, and T∗, H∗, W∗ the temporal/spatial sizes (thus L∗ = H∗W∗ tokens per
time slice). Using the derivation in Appendix D.2, the middle attention cost is

FVAE,mid-attn = T∗
(
8 C2

∗L∗ + 4 L2
∗C∗

)
, (25)

where the final 2C2
∗L∗ term arises from the output projection and is included in the 8C2

∗L∗

term above.

WAN2.1 decoder instantiation (values). In WAN2.1, the VAE decoder starts from
a latent grid (T0, H0, W0) =

(
⌈T/4⌉, H/8, W/8

)
with z=16 channels. A causal 3×3×3

convolution expands this to 384 channels, followed by a “middle” block consisting of two
residual 3×3×3 convolutions and a 2D self-attention layer applied independently per
time slice. The decoder then progressively upsamples: two temporal+spatial upsamplings
(doubling T, H, W and halving channels), followed by one purely spatial upsampling
(doubling H, W and halving channels). Residual blocks (three per stage) refine features at
each resolution, and a final 3×3×3 convolution produces the RGB output at (T, H, W ).
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Table 10 summarizes the dominant operators for FLOP accounting. Applying Eq. (23)
across these layers yields FVAE,conv, while Eq. (25) gives the middle-attention cost.

D.9 Total FLOPs and Leading-Order Scaling

We finally obtain

Ftotal(H, W, T, S) = Ftext + FVAE,conv + FVAE,mid-attn + Fτ + FDiT , (26)

with components given by (21), (23), (25), (22), and (19). Since ℓ grows linearly with H,
W , and T (Eq. 13), the ℓ2d and ℓmd terms in FDiT dominate for typical settings (ℓ ≫ m),
yielding quadratic growth in H, W , and T , and linear growth in S.

Scope and caveats. (i) FlashAttention and fused kernels reduce memory traffic and
constants but do not change FLOP counts. (ii) KV caching changes only the cross-attention
4md2 term from per-step to once-per-video. (iii) Windowed or factorized attention replaces
ℓ (or m) by an effective window size, altering quadratic scaling. (iv) If activations or norms
become bandwidth-bound, the proportionality between FLOPs and latency weakens; our
WAN2.1 measurements on H100 indicated compute-bound behavior over the operating
points considered.
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Table 8: Operation-wise cost during decode for Llama-3.1 8B (FP32). FLOP/byte
counts are for a single generated token; ℓ is the current context length (ℓ = s + t − 1).

Operation and Formula Fo (FLOP) Do (bytes) ℓ⋆

Executed once per generated token

Token + position lookup 0 bhqbw memory-bound

Executed N times per block

LayerNorm1 5bhq 2bhqbw memory-bound
Q projection (xWQ) 2bh2

q (2bhq + h2
q)bw memory-bound

K projection (xWK) 2bhqhkv (b(hq + hkv) + hqhkv)bw memory-bound
V projection (xWV ) 2bhqhkv (b(hq + hkv) + hqhkv)bw memory-bound
RoPEQ 5bhq 2b(hq + d)bw memory-bound
RoPEK 5bhkv 5b(hkv + d)bw memory-bound
Flash Attention (P = softmax(QK⊤), P · V ) bℓ(4hq + 5nq) (4bhq + bℓhkv + bnqℓ)bw compute ≤ ℓ⋆ ≤ memory
Output proj. WO 2bh2

q (2bhq + h2
q)bw memory-bound

Residual add1 bhq 2bhqbw memory-bound
LayerNorm2 5bhq 2bhqbw memory-bound
FFN up proj. (xWup) 2bhqhff (b(hq + hff) + hqhff)bw memory-bound
SiLU activation 4bhff 2bhffbw memory-bound
FFN gate proj. (xWgate) 2bhqhff (b(hq + hff) + hqhff)bw memory-bound
Element-wise mult (gate · up) bhff 2bhffbw memory-bound
FFN down proj. (xWdown) 2bhqhff (b(hq + hff) + hqhff)bw memory-bound
Residual add2 bhq 2bhqbw memory-bound

After the N blocks

Final LayerNorm 5bhq 4bhqbw memory-bound
LM head (xWLM) 2bhqV (bhq + V hq + b)bw memory-bound
Softmax on logits 5bV 2bV bw memory-bound
Top-k / Argmax / Sampling ∼ 0.1bV bV bw memory-bound
Post-processing (bitwise ops, comparisons, scatter) negligible ∼ bV bw memory-bound
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Table 9: Complete set of WAN2.1-T2V-1.3B hyperparameters and constants. This table
provides the full notation, including VAE layer-wise symbols (instantiated explicitly in
Appendix D.8).

Symbol Value Meaning

Global video parameters

T variable Number of frames
H × W variable Input spatial resolution
S variable Number of denoising steps
g 2 CFG passes per step (cond + uncond)
vt, vs 4, 8 Temporal and spatial downsampling factors of the VAE
ph, pw 2, 2 Spatial patch size in the DiT latent grid

Diffusion Transformer (DiT)

N 32 Number of DiT layers
d 2048 Hidden size
f 4 MLP expansion factor (8192 = 4d)
ℓ (1 + T

4 ) H
16

W
16 Token length of latent grid

Text encoder (T5-XXL)

m 512 Output tokens per video (conditioning length)
ptext 2 Calls per video (cond + uncond)
dtext 4096 Hidden size
Ltext 24 Encoder layers
ftext 2.5 MLP expansion factor

Timestep embedding

dτ 256 Hidden width of timestep MLP

VAE (layer-wise; values in App. D.8)

j 1, . . . , Ndec,conv Layer index along the VAE decoder path
Ndec,conv 11 Number of 3D conv layers in the VAE decoder
k

(j)
t , k

(j)
h , k

(j)
w – 3D kernel sizes of decoder layer j

C
(j)
in , C

(j)
out – In/out channels at decoder layer j

T (j), H(j), W (j) – Output grid sizes at decoder layer j
C∗ 384 Channel width at middle attention block
T∗, H∗, W∗ ⌈T/4⌉, H/8, W/8 Grid sizes at middle resolution
L∗ H∗W∗ Spatial token length per frame (2D middle attention)

Hardware / efficiency constants

µ 0.456 Empirical efficiency (fraction of Θpeak)
Θpeak 989×1015 FLOP/s Peak GPU throughput (H100)
Pmax 700 W Sustained GPU power
Dtotal Ftotal/(µΘpeak) Total latency
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Table 10: VAE decoder: representative dominant operators for FLOP accounting (layer
j). It mirrors the encoder; z=16, C∗=384, middle resolution (⌈T/4⌉, H/8, W/8).

Stage j Op type Kernel (kt, kh, kw) C
(l)
in → C

(l)
out T (l) H(l) W (l)

D0 conv3d (3, 3, 3) z → 384 ⌈T/4⌉ H/8 W/8
Middle (RBs) conv3d (3, 3, 3) 384 → 384 ⌈T/4⌉ H/8 W/8

Middle (attn 2D) attn-2D – 384 → 384 ⌈T/4⌉ H/8 W/8
D1 (RBs) conv3d (3, 3, 3) 384 → 384 ⌈T/4⌉ H/8 W/8
Up (time) conv3d (time) (3, 1, 1) 384 → 2×384 ⌈T/2⌉ H/8 W/8
Up (space) conv2d (space) (1, 3, 3) 384 → 192 ⌈T/2⌉ H/4 W/4
D2 (RBs) conv3d (3, 3, 3) 192 → 384 ⌈T/2⌉ H/4 W/4
Up (time) conv3d (time) (3, 1, 1) 384 → 2×384 T H/4 W/4
Up (space) conv2d (space) (1, 3, 3) 384 → 192 T H/2 W/2
D3 (RBs) conv3d (3, 3, 3) 192 → 192 T H/2 W/2
Up (space) conv2d (space) (1, 3, 3) 192 → 96 T H W

Head conv3d (3, 3, 3) 96 → 3 T H W
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